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2 |Introduction 

 

First studies, first questions. 

The original goal of the research presented in this dissertation was to study techniques 

and methods for creating believable artificial opponents for computer games. Computer 

games have a significant entertainment factor. It is hard to find anyone who did not 

occasionally play them in some form or other whether it is on a desktop computer, tablet or 

smart phone. Games are one of the widest spread recreational activities most people are 

familiar with (Entertainment Software Association, 2013). Using games as experimental 

tasks provides a more familiar environment to participants and allows them to be more 

engaged in a task. 

More importantly, computer games are great representatives of real-life tasks. They 

require from a player a wide range of cognitive skills used in real world tasks on a daily 

basis. Many studies show that skills acquired during gameplay are transferred to real-world 

problems. Playing video games can help to improve various aspects of cognition such as 

attention, vision, memory or even executive control (Boot, Kramer, Simons, Fabiani, & 

Gratton, 2008; Glass, Maddox, & Love, 2013). Furthermore, positive effects of video 

games are present in children, adults and elderly people alike (Anguera, Boccanfuso, 

Rintoul, Al-Hashimi, Faraji, Janowich, Kong, Larraburo, Rolle, Johnston, & Gazzaley, 

2013; Basak, Boot, Voss, & Kramer, 2008; Mackey, Hill, Stone, & Bunge, 2011). 

It is relatively easy to adapt games to controlled laboratory environment without overly 

simplifying to a degree that it is no longer a true representative of real-world tasks. As a 

result, games allow studying roles of individual cognitive processes as well as how those 

processes work together to solve complex problems. 

In this thesis, the emphasis is put on the latter issue: how cognitive processes collaborate. 

There are plenty of existing studies of individual cognitive processes, but there is a lack of 

understanding how those processes fit together. For example, it is relatively well 

understood how feature-based visual search works (Treisman, & Gelade, 1980; Wolfe, 

2007; Wolfe, J., & Horowitz, 2004). Holistic perception of human faces is also a well-

researched field (Maurer, Grand, & Mondloch, 2002; Wenger & Ingvalson, 2003). 

However, studies of these two types of cognitive processes are done separately and in 

isolation from one another. Neither of them can provide a feasible explanation of how we 

find and recognize a familiar face in a crowd of people, something we do quite often in a 

real world. Furthermore, connecting two theories of visual search and holistic perception is 

not a trivial task. At least, it requires an understanding of how a top-down goal of finding a 

particular person's face is combined with bottom-up processes of visual search such 

processing and recognition of visual features either individually or as whole. A similar 

argument can be invoked with respect to cognitive processes other than holistic processing 

and feature-based search. 

Chapter 2 describes a study of players' behaviors in the card game of SET. The game has 

a highly perceptual component that requires a skill to identify quickly combinations of 

cards defined by the game's rules. As such, top-down strategy in the game is heavily 

influenced by bottom-up visual processes. Chapter 2 tackles the issues of how we combine 

bottom-up visual processes with top-down meta-control, and the roles of two types of 

processes in defining participants' performance.  

Chapter 5 builds on Chapter 2 and further extends study about SET. Any complex task 

can be defined in terms of its structural and presentation components. Chapter 5 explores 

how the overall SET strategy revealed in Chapter 2 is defined and influenced by these two 
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components. In this follow-up study, the visual presentation style of the original game of 

SET was manipulated without any change in the structure of the game. This paradigm 

allows studying how overall strategy and individual steps in the strategy change due to 

different presentation style. It is shown how a change in a presentation style without any 

change in the isomorphic structure of a game can significantly affect subjects' performance. 

Models or modules? 

Although we were successful in modeling player behavior in SET using ACT-R cognitive 

architecture (Anderson, 2007), the study revealed a major obstacle in achieving our initial 

goal of developing a human-like AI using a cognitive architecture. Existing architectures 

are simply not sophisticated enough to tackle real-world problems. On the one hand, 

cognitive architectures such as ACT-R, EPIC (Kieras & Meyer, 1997; Meyer & Kieras, 

1997a, 1997b) or SOAR (Laird, Rosenbloom, & Newell, 1987; Newell, 1990) do not have 

automated reasoning mechanisms. On the other hand, computational reasoning systems 

based on architectures such as the Procedural Reasoning System (Ingrand, Georgeff, & 

Rao, 1992) are not proper representatives of human cognition. Significant amount of 

overhead coding and major simplifying assumptions are required to create a plausible 

model of any complex problem-solving task. The obstacle reflects one of the major 

problems cognitive modeling community faces today. 

The main objective of cognitive modeling is not to create isolated models of separate 

tasks, but to build a computational architecture of human embodied mind (Anderson, 2007; 

Newell, 1973, 1990) that explains its internal workings not only (1) from the perspective of 

constituent cognitive processes and theories, (2) but also as a single coherent system. So 

far, the cognitive modeling community excelled in achieving the first objective. However, 

the second objective more often than not is ignored. As a result, development of ACT-R as 

a cognitive architecture has seen very little significant advances in recent years. The 

conclusion is simple: ACT-R in its current implementation is simply not ready for 

modeling complex real-world problems. 

Current and past studies in cognitive modeling resulted in a proliferation of isolated 

models of human cognition. 80% of all articles published in major theoretical journals of 

Cognitive Science involve cognitive modeling (Busemeyer & Diederich, 2010; Farkaš, 

2012). These are the models of human behavior in very specific tasks with little regard of 

how it fits within theory of human mind as whole. This isolation gives a rise to a very 

challenging and daunting problem of how these models can be reused and combined 

(Newell, 1973, 1990). Some propose establishing a common repository of cognitive models 

(Addyman & French, 2012; Myung & Pitt, 2010). Common repository makes it easier to 

find existing models and reuse them. However, it provides little solution to problems of 

compatibility among models (even if they use the same cognitive architecture). As a result, 

there remains a major challenge of combining those models to simulate human cognition in 

complex tasks such as SET. 

Others adopt an approach of supermodels (Salvucci, 2010). A supermodel is a model 

based on a fixed cognitive architecture that already has a necessary knowledge that can be 

used across range of tasks. The major problem with supermodels is that it does not make 

such distinctions as task-specific versus task-general knowledge and innate versus acquired 

knowledge (Carey & Spelke, 1994; Kirkham, Slemmer, & Johnson, 2002; Markram & 

Perin, 2011; Perin, Berger, & Markram, 2011). A person born in Asia might have a very 

different acquired knowledge than the person born in Europe. However, it is quite likely 
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that they have the same innate knowledge. Similarly, our capability of solving a problem by 

using an analogy is task-general (Gust, Krumnack, Kühnberger, & Schwering, 2008). 

However, individual steps within analogy-based strategy might be dictated by task-specific 

knowledge.  

 I have adopted an approach that is different from the two previously mentioned. In any 

study of human cognition it is important to differentiate between task-specific and task-

general knowledge and processes. Ideally, any model of a specific task should contain 

knowledge and simulate cognitive processes specific to that task. Task-general knowledge 

and processes should be a part of cognitive architecture. Therefore, any cognitive modeling 

effort should be separated into two mandatory steps: (1) making any necessary additions 

and changes into a cognitive architecture to reflect task-independent components of 

experimental findings and (2) developing an architecture-based model to reflect task-

specific components of experimental findings. Current practices of cognitive modeling do 

not make, at least, any explicit differences between the two steps. This is a major cause why 

we have largely incompatible numerous cognitive models that contribute little to overall 

understanding of human cognitive system.  

ACT-R consists of a collection of modules each representing a particular type of 

cognitive resources that are independent of any task (Anderson, 2007; Anderson, Bothell, 

Byrne, Douglass, Lebiere, & Qin, 2004). New modules can be easily added into the 

architecture for the purpose of either adding a new type of cognitive resources or extending 

the functionality of the existing ones. Starting from Chapter 3, all modeling works in this 

dissertation adopt a strategy of developing both models and modules. When necessary, a 

task-general module for ACT-R architecture was developed or changes to existing ones 

were made alongside the development of a task-specific model.  

Because of being part of the architecture itself, modules are reusable across different 

models directly addressing the problem of reusability mentioned earlier. Furthermore, any 

changes in the architecture were extensively tested for validity via fitting models across 

range of behavioral tasks. Such testing ensures that new module or module changes are 

compatible with existing theories of human cognition. This, at least, partially addresses the 

problem of compatibility among separate cognitive modeling studies. Finally, development 

of modules directly contributes to the advancement of the ACT-R cognitive architecture. 

This is an approach different to traditional modeling. It puts emphasis on the architecture 

rather than the model. Consecutively, it also promotes understanding of human mind as a 

single coherent system without sacrificing the granular view of individual cognitive 

processes within distinct models. 

In ACT-R community, there are isolated instances where modelers put emphasis on 

development of modules rather than models. Those include modules of integrated threaded 

cognition theory (Salvucci & Taatgen, 2008), short-term declarative inhibition (Lebiere & 

Best, 2009), integrated theory of eye movements and encoding (Salvucci, 1999), time 

duration estimation (Taatgen, Van Rijn & Anderson, 2007), etc. These and other studies 

shows feasibility of module-centric modeling as way of explaining cognitive and 

psychological theories even in isolated experimental tasks.  

What modules do we need to play a game? 

As was previously mentioned, the original goal of this research was to study techniques 

and methods for creating believable artificial opponents for computer games. However, the 

study described in Chapter 1 revealed that ACT-R is not sophisticated enough to model 
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complex tasks such as SET. At the same time, the study clearly indicated that two major 

components were lacking in ACT-R. Following these results, the original goal was 

redefined as research into minimum components of a cognitive architecture necessary to 

develop plausible cognitive models for complex tasks such as computer games. 

Human vision 

Firstly, any complex task that requires making a decision based on the real-time 

knowledge of the world needs a reliable means of gathering information. Among five 

senses, the visual system is arguably the most important medium of gathering such 

information. Most of modern technology is designed around visual input as the primary 

source of communicating information to the user. Studies of efficient information 

communication mainly revolve around information visualization. ACT-R has a vision 

module as one of the core modules (Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 

2004; Byrne & Anderson, 2001; Salvucci, 2001). Unfortunately, the module provides only 

a bare bone implementation of the human visual system. Guidance of visual attention is a 

very complex process that has both top-down and bottom-up components (Orban, Fiser, 

Aslin, & Lengyel, 2008). On the one hand, visual attention is guided by bottom-up inherent 

properties of the visual scene such as contrast-based saliency of its constituent parts. On the 

other hand, visual attention is also guided by top-down components such as immediate goal 

and a context defined by previous experience. The default vision module provides no 

support to bottom-up attentional guidance. It also lacks several other fundamental 

functionalities such as long- and short-term visual memories, definition of visual objects 

along several feature dimensions and imagery capability. 

Chapter 3 introduces the Pre-Attentive and Attentive Vision (PAAV) module that is an 

extension to ACT-R's default vision module. As the name suggests, PAAV introduces a 

significant amount of pre-attentive functionality to ACT-R's visual system. PAAV is 

essentially an implementation of a collection of well-studied theories of human vision 

ranging from visual memory to contrast-based saliency maps for guiding visual attention 

(Itti, Koch, & Niebur, 1998).  

As a module, PAAV is completely task-independent. It was designed to be able to handle 

not only tasks commonly used to test computational models of human vision, but also more 

general and complex tasks such as SET. Several task-general elements that were part of the 

SET model described in Chapter 2 are incorporated into PAAV. A new refined model of 

the game of SET that uses PAAV module is described in Chapter 3. The new SET model 

inherited only task-specific components (game rules and strategies) from the old SET 

model. PAAV was also used in all cognitive models described in chapters following 

Chapter 3.  

Chapter 4 contains an interesting case study based on a task of identifying a Most 

Abundant Value (MAV). Experiments and models based on the task show how top-down 

control can directly override bottom-up saliency-based attentional guidance. Creating a 

plausible model for the task would have been impossible without the PAAV module. 

Human reasoning 

Any problem-solving task requires some degree of reasoning. It can be any form of 

reasoning: reasoning by analogy, reasoning based on rules or simply based on associations. 

Individual steps in the process of reasoning can be tied to specific task context, but our 

general ability to reason is a fundamental process independent of any specific task 
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(Gigerenzer, Todd, & the ABC Research Group, 1999; Johnson-Laird, 1983). For example, 

reasoning based on analogy is perceived to be fundamental to human cognition (Gust, 

Krumnack, Kühnberger, & Schwering, 2008). Cummins (1996a, 1996b) argued for 

innateness of deontic reasoning. On the other hand, there is evidence that infants' 

knowledge acquisition is largely dependent on innate concepts and principles (Baillargeon, 

2008). It should be clarified that the general reasoning ability is not necessarily innate. 

Innate knowledge is not synonymous with task-general knowledge. We have an extremely 

specialized ability to recognize and process human faces holistically (Richler, Gauthier, 

Wenger, & Palmeri, 2008). Similarly, acquired knowledge is not necessarily task-specific 

knowledge. For example, in his paradigm of skill transfer, Taatgen (2013) argues for a 

learning mechanism that produces partial task-general production rules from a specific 

context. It is very much possible that we acquire general reasoning skills in early stages of 

our development. 

In terms of ACT-R, there should be a task-independent general set of production rules 

that provide schematic rules for reasoning based on a given context. For example, rules in 

SET dictate that if two candidate cards are green and blue then the third card should be red 

in order to form a valid set. This rule can be written as (Blue, Green) => (Red). This is a 

task-specific rule. However, the ability to reason based on this rule should be task general. 

ACT-R should have a task-general knowledge of conjunction of concepts. It also should 

have knowledge that conjunction of certain concepts can imply another concept.  

Chapter 6 describes the Human Reasoning Module (HRM) developed by me for ACT-R. 

The HRM introduces a basic set of declarative and procedural knowledge to ACT-R that 

allows it to reason based on task-specific instructions. The HRM introduces an explicit 

notion of a concept. It also knows that individual concepts can be combined to form more 

complex statements. In turn, those statements can be combined into declarative rules that 

can be used to encode task-specific instructions. Concepts, statements and rules based on 

statements form the declarative part of the HRM knowledge. The HRM's procedural 

knowledge is represented by a set of task-general production rules that describe how 

declarative and other forms of knowledge can be used for reasoning. Ideally, if the HRM is 

used and a proper set of instructions about the task is given in the declarative memory, the 

modeler will have to write only few task-specific production rules responsible mostly for 

meta-control. 

One of the features that set apart HRM from the traditional view of human mental logic 

(Rips, 1983) is that reasoning in the HRM is not purely top-down. Facts and evidence 

necessary for reasoning can be extracted on the fly from information sources other than 

declarative memory. An example of such alternative source is the visual memory in PAAV. 

If I am asked about a position of a fork relative to the plate, and I can see both of them in 

front of me, then I do not need to recall a propositional statement from my declarative 

memory. I can just directly and quickly extract the fork's location cue from my spatial 

memory. Similarly, PAAV can take advantage of bottom-up information in visual memory 

during the reasoning. For example, it can extract raw spatial information from visual 

memory and directly translate it into a declarative statement. 

The PAAV and the HRM combo 

The combination of PAAV and the HRM within the ACT-R architecture provides a 

powerful toolset that allows modeling human behavior from the simplest of tasks to 

complex problem solving. Chapter 6 describes a model of a spatial reasoning task that is 
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highly dependent on both the HRM and PAAV. With the help of this model, we try to 

explain the connections between the two competing theories of deductive reasoning: mental 

models (Johnson-Laird, 1983) and mental logic (Rips, 1983). 

Chapter 7 provides a description of incomplete but very promising and interesting study 

of players' strategy in the Qwirkle game. The game requires a player to make explicit 

comparisons and weigh alternative moves to maximize the score. At the same time, the 

game retains a significant perceptual component since a significant amount of reasoning is 

based on matching or mismatching colors and shapes. Although we do not have a cognitive 

model yet, the analysis of human data already indicates performance is highly dependent on 

both the visual system and reasoning capability to make an optimal decision. As such a 

plausible model of a Qwirkle player will require both the PAAV and the HRM modules. 
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Abstract 

Complex problem solving is often an integration of perceptual processing and 

deliberate planning. But what balances these two processes, and how do novices 

differ from experts? We investigate the interplay between these two in the game 

of SET. This article investigates how people combine bottom-up visual 

processes and top-down planning to succeed in this game. Using combinatorial 

and mixed-effect regression analysis of eye-movement protocols and a cognitive 

model of a human player, we show that SET players deploy both bottom-up and 

top-down processes in parallel to accomplish the same task. The combination of 

competition and cooperation of both types of processes is a major factor of 

success in the game. Finally, we explore strategies players use during the game. 

Our findings suggest that within-trial strategy shifts can occur without the need 

of explicit meta-cognitive control, but rather implicitly as a result of evolving 

memory activations. 
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Introduction 

Human performance in complex tasks is often a combination of internal planning and 

responding appropriately to the environment. Nevertheless, cognitive models of complex 

tasks typically focus on the mental planning aspects, and fail to take into account that the 

external world can heavily influence the control of behavior. 

The role of the environment was first recognized in robotics (Brooks, 1991), but it was 

later extended to human cognition to form embodied cognition (e.g., Clark, 1997). 

However, in more complex tasks, it is clear that the control of behavior is not entirely in the 

environment. The challenge is, therefore, to understand how control is shared between goal-

driven planning and processes that are driven by perceptual input. Moreover, the balance 

between goal and perceptually driven control is likely to change with expertise (Kirsh & 

Maglio, 1994). The approach we take in this article follows the threaded cognition theory 

of multitasking (Salvucci & Taatgen, 2008). We will assume two parallel processes: a 

bottom-up visual process that scans the visual field on the basis of saliency and similarity, 

and a top-down planning process that tries to achieve the goal but also biases the bottom-up 

process. The interaction between the two processes follows the central idea in threaded 

cognition that there is no overall executive process that balances parallel goals. Instead, the 

two processes alternate in using the cognitive resources (e.g., vision, declarative memory 

[DM], procedural memory, etc.). Changes in the balance between the two occur if one 

process benefits more from learning than the other and therefore makes more efficient use 

of the resources available to it. 

Finding an appropriate task to study the cognitive aspects of human behavior in real-life 

situations is not easy. However, games provide environments that often require the same 

type of complex processes that are usually involved in real-world situations (Green & 

Bavelier, 2004). This has the advantage that the behavior of a player can be studied in a 

controlled environment. These qualities make games on a computer an ideal tool for 

studying complex cognitive processes. One such game is the card game SET. Please, refer 

to Appendix A for a detailed description of SET. 

In the regular game, when a set is found, the corresponding set cards are picked up and 

replaced with new cards from a deck. After the deck runs out, the player with the most 

cards wins. Even though a regular game of set consists of multiple rounds, we will refer to a 

“game of set” in what is normally a single round: finding a set in 12 displayed cards. 

There are several advantages of choosing SET as a target game of study. First, SET has 

an appealing simplicity of the game dynamics. The game has very simple rules to follow 

and a relatively static game environment. Despite the simplicity, SET requires complex 

cognitive processes, including pattern recognition, visual processing, and decision making. 

Previous studies on SET have established that both cognitive and perceptual processes are 

important (Jacob & Hochstein, 2008; Taatgen, Oploo, Braaksma, & Niemantsverdriet, 

2003). Without consideration of both of them in combination, important information in 

understanding of how players play the game will be inevitably lost. As such, the game of 

SET provides an excellent opportunity to study the dynamics of such processes in a 

relatively simple environment. 

Next, the game is quite unpredictable in its structure, and players are not likely to replay 

the exact same sequence again. There are �8112� (approximately 7*1013) possible 

combinations of 12 cards, which makes it highly unlikely that players will play through the 
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same 12 cards again. There are also 1,080 different sets. This means that even experienced 

players will periodically have to find a set they have never encountered before. 

Finally, game difficulty can differ significantly based on a player’s strategy. Given an 

array of 12 cards with a single set in it, a player may choose to compare every possible 

combination of three cards. There are 220 possible combinations, and a probability of 

finding a set with random choice is 1/220. However, a player may also consider 

combinations of two cards as a pair uniquely defines a third card. In that strategy, a player 

would pick two cards, would then determine what the third card should be to complete a 

set, and would then see whether the predicted third card is actually among the remaining 10 

cards. There are �122 � = 66 possible pairs, and the same set is defined by three different 

pairs. Therefore, a probability of finding a set with a random choice of a pair is 1/22. 

However, with an optimal search strategy, a player still has to consider a maximum of 54 

pairs before finding a set. This is a significant decrease in complexity compared with a 

strategy where a player has to compare every combination of three cards. 

The above two strategies are both top-down in the sense that they do not take into account 

what the properties of the particular array of 12 cards are. However, players are likely to be 

using perceptual processes and clues, such as visual grouping and visual similarity, to 

decrease complexity or speed up the search. As an example, suppose that there are eight red 

cards and two cards each for blue and green. Furthermore, let us assume that a player is 

using similarity in color to find a set. Blue and green cards cannot have a set as there are 

only two cards in each group. There are �83� = 56 combinations of three cards among red 

cards and 32 combinations of three cards with different colors. It is already a significant 

decrease in complexity from 220 to 88 possible combinations and a 2.5 time increase in a 

chance probability of finding a set. Chance probability of finding a set among red cards is 

even higher 56/88 or about 2/3. This leverage in a chance probability only comes from a 

larger group size for red cards. For example, if there is an even split of four cards for each 

color, then the chance probability of a set being among cards of the same color is only 4/76. 

As will be discussed next, players actually exploit the advantage of a larger group size. 

There are two studies directly relevant to the work in this article. Jacob and Hochstein 

(2008) did several experiments with human subjects playing SET on a computer without 

any opponent. Each experiment was designed to test a particular aspect of the game 

including a strategy of playing the game, dependency of the performance on the set level, 

attribute preference, and the learning. Taatgen et al. (2003) also did similar experiments 

aimed at studying the strategy of playing the game and developed a computer model of a 

human player. 

Jacob and Hochstein (2008) demonstrated that SET players prefer to look at perceptually 

similar cards, and, for the comparison of the cards, mainly rely on the perceptual processes 

such as similarity-detecting process. According to the authors, bias to the perceptual 

similarity and corresponding bottom-up processes can explain why players need less time 

to find lower level sets than higher level sets. Taatgen et al. (2003) also reached the 

conclusion that the perceptual elements play a greater role in finding lower level sets. They 

suggested a strategy where a player looks at an arbitrary first card then at a second card that 

shares an attribute value. Next, the player predicts the third card and determines whether 

that card is one of the remaining 10 cards. Taatgen et al. (2003) also hypothesized that the 

choice of the first card might not be arbitrary in some cases. They proposed that players try 

to find the set among the cards that have an attribute value occurring in more than half of 

12 cards. For example, if there are many red cards, it is attractive to search for a set among 
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those cards. Taatgen et al. (2003) implemented this strategy in an Adaptive Control of 

Thought–Rational (ACT-R) model. However, the data they collected did not have enough 

detail to determine whether subjects used such a strategy. 

Jacob and Hochstein (2008) proposed a generalization of the above strategy based on the 

notions of the most abundant value and the most abundant-value group. The former refers 

to an attribute value that occurs most, and the latter refers to the group of cards that have 

the most abundant value. They found that the sets belonging to the most abundant-value 

group are preferred to the sets outside of that group. In addition, the time required to find 

the set in the most abundant-value group decreased as the size of the group increased. Most 

abundant-value group was preferred to any other value group independently of the attribute 

type. Jacob and Hochstein (2008) suggested a dimension-reduction strategy where players 

try to reduce the four-dimensional search space to three by choosing to look at cards that 

have one or more attribute values in common. It was assumed that dimension-reduction 

strategy is primarily used with the most abundant value. 

Research objectives 

Cognitive and perceptual processes 

The dimension-reduction strategy is an example of a strategy that combines perceptual 

processing and goal-directed planning. Dimension reduction’s gain in efficiency is due to 

the fact that the perceptual system is good at detecting similarity, but goal-directed planning 

is needed to decide what attribute value to focus on and for how long. Even though the 

earlier studies have established that dimension reduction is used, their methodology did not 

allow studying the dynamics within a trial. Moreover, not all sets can be found with that 

strategy. In particular, level 4 sets have no attributes in common, making them impossible 

to find with dimension reduction. To gather real-time behavioral data that can provide more 

insight into previously hidden aspects of user behavior, we decided to use eye tracking. As 

many studies have shown that the eye-movement protocols directly or, at least, indirectly 

reflect both the cognitive processes and the amount of cognitive load (Kong, Schunn, & 

Wallstrom, 2010; Rayner, 1995; Salvucci, 1999), we considered eye tracking a viable 

choice for studying human behavior. 

Performance 

Performance in SET is defined by how fast a player can find a set. Hence, speed is a 

major factor in the game. There can be different factors defining a player’s speed. One of 

them is a strategy. This is the aspect of the game we are interested to explore. Taatgen et al. 

(2003) found that most players differ little in reaction times when it comes to finding lower 

level sets. However, reaction times differ significantly in finding higher level sets. One 

explanation for this effect might be that all players are likely to rely on general perceptual 

processes to find lower level sets (Jacob & Hochstein, 2008). On the other hand, finding the 

higher level sets may require strategies. As a consequence, we expect that slow players’ eye 

movements will be more guided by similarity between cards than faster players, because 

faster players’ strategies will overrule the default similarity-based search. 

We will not address how previous experience can affect the performance, or how subjects 

derive the strategies. One can get better at the game through practice, by naturally having 

better strategic thinking skills or by just simply being good at pattern recognition. Learning 

in SET is a complex process and requires separate study. 
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Improved ACT-R model 

The ACT-R model created by Taatgen et al. (2003) was able to closely approximate the 

human player’s reaction times. Its main drawback is that it fully predicts the third card, 

given the first two cards it has looked at, and then searches for that card among the 

remaining cards. It, therefore, does fully use a dimension-reduction strategy and also does 

not use perceptual similarity to find sets. In other words, it uses a pure top-down strategy. 

Our aim is to test whether a model with greater emphasis on perceptual elements of the 

game can explain the human data. 

Experiment 

Subjects 

In total, 14 subjects participated in the experiment. The age of the subjects ranged from 

20 to 30 years. All subjects were either students or staff members of University of 

Groningen. The subjects’ previous experience with SET varied greatly: from a few played 

games to several years of experience. 

Design and procedure 

Every subject was asked to do 60 trials. The group of 60 trials was the same for all 

subjects, but the order was determined randomly for each subject. Each trial consisted of 12 

cards shown on a computer screen and arranged in an 3×4 array similar to one shown in 

Figure A.1. Each trial had exactly one combination of three cards that formed a set. 

Subjects were aware of this but were not told about the level of the set. Subjects were asked 

to find a set and select the relevant cards with a mouse. A time limit of 180 s was given for 

each trial after which the next trial was shown. 

All 60 trials were randomly generated. In 30 trials, one of the set cards was highlighted 

with a red border. These trials were distributed evenly over the four levels, with seven or 

eight trials of each level for each of the two highlighting conditions. The highlighted card 

belonged to the set and served as a clue for the subject to find the other two cards. Subjects 

were aware about the meaning of a highlighted card. The presence of the highlighted card 

should make the task of finding a set much easier. In particular, it decreases the number of 

possible combinations from 220 to 55, and the number of possible pairs from 66 to 11. As 

there are two pairs that lead to a set, in the worst case, a player will have to consider only 

10 pairs. This is a six times reduction in complexity of the problem in terms of the search 

space. The main purpose of highlighting a card is that it provides a reference point on 

which we can base our eye-movement analysis. 

Prior to an experiment, subjects were asked to do four warm-up trials to let them get 

familiar with experiment setup and with SET itself, in the case that the subject had never 

played it before. Results from those trials were not included in the analysis. 

Eye tracking 

An EyeLink 1000 eye tracker was used for recording the eye movements. It is a desktop-

mounted remote eye tracker with monocular sampling rate of 500 Hz and spatial resolution 

of <0.01° RMS. The card images were shown on a 20-inch LCD monitor with screen size 

of 1,024 × 768 pixels and screen resolution of 64 pixels/inch. The card images had a size of 

124 × 184 pixels, or 4.02° × 5.95°. The horizontal and vertical distances between images 
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were 80 and 70 pixels, respectively, which constitutes to 2.59° and 2.27°. Angular sizes 

were calculated with an approximated viewing distance of 70 cm as subjects were given a 

certain freedom for head movement. The gaze position was calculated using the eye’s 

corneal reflection captured using an infrared camera compensated for head movements. The 

eye tracker’s default parameters were used to convert gaze positions into fixations and 

saccades. The calibration of an eye tracker was performed at the start and during the 

experiment, if necessary. A calibration accuracy of 0.8° was considered as an acceptable 

measure. Before each trial, subjects were asked to do a drift correction as an additional 

corrective measure. 

Experiment results 

Reaction times 

In total, there were 29 trials where subjects failed to find the set, constituting 3% of all 

trials. Given this small proportion, we treated them as response trials with a reaction time of 

180 s. Figure 2.1 shows reaction times by level and highlighted condition. It shows that 

having a highlighted card as a clue more than halves the reaction time, and that the reaction 

time increases as the set level increases. This latter effect was also observed in previous 

studies (Jacob & Hochstein, 2008; Taatgen et al., 2003). 

As it is shown in Figure 2.2a, subjects differed significantly by mean reaction times. As 

can be seen in the graph, all subjects were divided into three groups of fast, medium, and 

slow players based on their mean reaction times. Figure 2.2b indicates that there is only a 

small difference in speed among three groups when it comes to finding a level 1 set. 

However, as level increases, the differences between three groups also increase. This result 

is consistent with description of fast and slow players provided in Taatgen et al. (2003). 

Hence, we expected the groups to exhibit different behavioral effects despite the post-hoc 

division. 
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Figure 2.1: The mean reaction times with standard errors in ordinary and 

highlighted trials clustered by the levels and averaged over all subjects. 
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Fixations 

As it is quite obvious from RT plots shown above, trials vary by their lengths of fixation 

sequences. Figure 2.3 shows proportions of trials by lengths of their collapsed fixation 

sequences. A collapsed fixation sequence is a sequence where consecutive fixations on the 

same card are collapsed into one fixation. Figure 2.3a shows that in the ordinary condition 

around 49% of all trial has 100 or less collapsed fixations. According to Figure 2.3b, 

around 85% of all trials have less than 100 collapsed fixations in the highlighted condition. 

 

 
 

There is also a variation in the number of collapsed fixations depending on the level 

condition. In the ordinary condition, average lengths of collapsed fixation sequences in 

levels 1 to 4 are 93 (SE = 15), 132 (SE=15), 218 (SE=26) and 224 (SE=26) fixations 

respectively. In the highlighted condition, those numbers are 28 (SE=4), 43 (SE=6), 67 

(SE=7) and 91 (SE=10) fixations. 

Dimension reduction 

The reaction-time analysis shows that subjects require less time to find sets with 

perceptually similar cards. This suggests that subjects apply a similarity-based strategy. 

Figure 2.3: Proportions of trials by lengths of collapsed fixations sequences in 

(a) the ordinary and (b) the highlighted conditions. 
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Figure 2.2: (a) Mean reaction times averaged over all trials for each subject. 

Subjects are divided into three groups: fast, medium, and slow players. (b) Mean 

reaction times averaged over trials of the same level and player group. 
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Even though dimension reduction is such a strategy, we want to investigate in detail to what 

extent this strategy is used. In this subsection, we will examine evidence for the use of the 

dimension-reduction strategy. If subjects used dimension-reduction strategy, then the 

corresponding scanpath should contain consecutive fixations on cards sharing at least one 

common attribute value. 

 

 
 

To explore the existence of such a pattern, the scanpath from each trial was transformed 

into labeled fixation sequences. Each card in a trial was assigned one area of interest with 

four different labels (see Figure 2.4). 

Each label describes one of the attribute values in a card and the position of the card in an 

array. For example, “G1,”“E1,”“W1,” and “C1” are four labels describing the first card 

with values as green-open-two-oval. Then each fixation was tagged with four labels of an 

area of interest within which it falls. The consecutive fixations on the same area of interest 

are considered as a single fixation, and the corresponding fixation durations are summed. 

We further refer to such fixations and fixation sequences as collapsed fixations and 

collapsed fixation sequences. Combining all labeled collapsed fixations of a common 

attribute type into collapsed fixation sequences produces four distinct sequences for each 

trial. 

An analysis of the collapsed fixation sequences revealed the existence of a pattern of 

collapsed fixations related to the usage of dimension reduction. We will demonstrate this 

using the example problem from Figure 2.4. 

Figure 2.4: One of the problems shown to a subject. Card 7 is the highlighted 

card. Also shown are the collapsed fixations (circles) and saccades (arrows) 

produced by the subject. The outer thin, black borders indicate 12 areas of 

interest. The four combinations of letters and numbers on top of each card 

represent four labels for each area of interest. A set is formed by the fourth, fifth, 

and seventh cards. 
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Figure 2.5a shows a collapsed fixation sequence diagram produced from the scanpath 

shown in Figure 2.4. In this example, the subject needed only 48 collapsed fixations to find 

a set. Each horizontal lane in the diagram shows a subject’s collapsed fixation sequence 

with respect to the particular attribute type. One unit on the x-axis represents a collapsed 

fixation on one particular card, while the corresponding bars on four lanes represent 

attribute values of that card. In the diagram, the labels are color coded according to the 

corresponding attribute value. The consecutive collapsed fixations on the cards with the 

same attribute value are shaded with a solid color if the probability of such a collapsed 

fixation subsequence occurring by chance is equal to or below 0.05 (refer to the Appendix 

for details of calculating the probability). 

 

 
 

From the figure, we can see that at the beginning of the trial, the subject looked at green 

cards, and, by the end, at cards with an oval shape. We can conclude that the subject used 

dimension-reduction strategy at least two times, and each time with respect to a different 

attribute value: green and oval. The fixation pattern for this trial is not unique for this 

particular subject. Figure 2.5b shows the proportion of all subjects that used dimension 

reduction with green and oval values. This proportion is also contrasted against proportions 

of subjects that used dimension reduction on any of the three values from either number or 

shape attributes. The figure shows that at the start of the trial, subjects preferred to search 

for a set among green cards and later switched to a group of cards with an oval shape while 

mostly ignoring all other values. 

Effects of an attribute type on dimension reduction 

According to Jacob and Hochstein (2008), dimension reduction primarily occurs with the 

most abundant value. However, it can be observed from Figure 2.5b that a majority of 

subjects prefer the group of green cards to the group of cards with an oval shape despite the 

fact that the latter has the most abundant value. This suggests that the type of the attribute 

also plays a role in deciding the value to be used for dimension reduction. 

To find an effect of an attribute type, we have calculated an average proportion of 

collapsed fixation sequences where all subjects used dimension reduction for all problems. 

Figure 2.5: (a) Single subject’s collapsed fixation sequence diagram for trial 

“lvl3_15.” (b) Changing proportion of subjects who used dimension reduction in 

trial “lvl3_15” as a function of fixation position in the collapsed sequence and 

attribute value. 
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The result indicates that blocks of collapsed fixations with the same attribute value occupy 

on average 46% and 35% of an overall collapsed fixation sequence in trials with and 

without highlighted card, respectively. Note that these estimates are on the conservative 

side, because some sequences may not have been recognized because they cannot be 

distinguished from a random sequence, either due to wandering fixations, sequences that 

are too short, or inaccuracy in the eye tracker. 

 

 
 

Figure 2.6a shows how use of dimension reduction distributes over the four attribute 

types and reveals an effect of overall attribute preference. Subjects are two times more 

likely to look at the group of cards with the same color than any other attribute. The 

distributions of the most abundant values in the 60 trials among color, shading, number, and 

shape were 28, 27, 19, and 26, respectively1. According to such, the corresponding bars on 

Figure 2.6a should have nearly equal height if choice of a value was dependent only on 

group size. This is not the case. The results suggest that the four attribute types have 

different saliency properties with color being the most salient, and shape and shading being 

the least salient attributes. 

There is still an effect of the most abundant value within each attribute type. This means 

that among the three values of the same attribute type, the most abundant value is preferred 

for dimension reduction. As Figure 2.6b indicates, in 85% of all trials, subjects prefer the  

most abundant value over the other two values of the same attribute type2. The trend is 

consistent among all four attributes. 

 

 

                                                            
1 The sum of distribution numbers exceeds the total number of trials because the same trial can have two or more 

most abundant value groups of equal size but different attribute types. 
2 To eliminate possible influence of the highlighted card, only trials without highlighted cards were considered in 

calculating the proportion. 
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Figure 2.6: (a) Mean proportions of attribute types used in similarity-based 

scanning. Proportions are shown separately for trials with and without 

highlighted card. (b) Proportion of trials where subjects preferred to use a value 

for dimension reduction with the biggest group size among other values of the 

same attribute type. The horizontal, dashed black line indicates the expected 

proportion if the choice was made randomly. 
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Effect of dimension reduction on performance 

There is also a difference between fast and slow players in how they use dimension-

reduction strategy. Figure 2.7a shows how the usage of dimension-reduction strategy 

changes over time in trials with a highlighted card. There is a general trend among players 

to use dimension reduction at the beginning of a trial and gradually stop using it over time. 

It suggests that players gradually switch from a dimension reduction to some different 

strategy. Furthermore, the graph suggests that slow players are more likely to stick to 

dimension reduction longer than fast players. 

 

 

Dissimilarity-based search 

In the previous section, we have seen that subjects use a dimension-reduction strategy to 

reduce the complexity of finding a set. However, it is not yet clear how a similarity-based 

approach can eventually find sets with many different attribute values. The fact alone that 

subjects were able to find level 4 sets, in which all attribute values are different, proves that 

the strategies they use are not limited to dimension reduction. In fact, we have discussed 

earlier that subjects used dimension-reduction strategy only in 46% and 36% of the time in 

trials with and without highlighted card. Figure 2.7a also suggests that players switch to a 

different strategy. 

It is our assumption that subjects gradually switch from a similarity-based strategy to a 

dissimilarity-based strategy. It should be possible to observe this switch from one strategy 

to another in collapsed fixation sequences produced from trials with highlighted cards. 

Search subsequences 

The next analysis involves only trials with a highlighted card. Preliminary inspection of 

the data revealed that subjects refixated on a highlighted card approximately every five 

Figure 2.7: (a) Changing proportion of trials in which dimension reduction was 

used. The proportions are calculated as a function of the collapsed fixation 

position within a trial. The proportion on collapsed fixation x is calculated by 

counting the trials that have a dimension-reduction block that includes x. (b) The 

x-axis shows subsequences' positions within trial's overall collapsed fixation 

sequence. The y-axis on the left measures overall similarity of a subsequence to 

the highlighted card. The decreasing trend indicates that, with each new 

subsequence, subjects looked at cards less similar to the highlighted card. The y-

axis on the right measures the mean (and standard error) number of collapsed 

fixations in each subsequence calculated separately for fast and slow players. 
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collapsed fixations, presumably to refresh their memory and to restart a new search 

subsequence. The following labeled collapsed fixation sequence (provided for a purpose of 

example only) “4-7-11-10-3-7-2-11-4-3-10-2-5-9-5-6-4-7-5-8-4”, with 4 being a fixation on 

a highlighted card, can be broken down into three subsequences. Fixations in each 

subsequence can be labeled with respect to four attribute dimensions in the same way 

described in Dimension Reduction section. Given the labeled subsequence, we estimated 

similarity to the highlighted card for each fixated card within the subsequence. Similarity is 

the number of attributes that share the same value between two cards. Finally, by taking a 

mean of all similarity values, we estimated subsequence's overall similarity to the 

highlighted card. Breaking down a trial into separate subsequences allows us to analyze 

how a mean perceptual similarity of fixated cards to a highlighted card changes with each 

subsequence (Figure 2.7b). The calculations were done separately for slow and fast players. 

There is a general tendency to look at a less similar card with each new fixation and each 

new subsequence. When players start a search, they seem to prioritize cards based on 

decreasing similarity to a highlighted card. Furthermore, Figure 2.7b suggests that with 

each new search subsequence, subjects lower the similarity threshold and include in their 

visual search less similar cards that were not included in the previous subsequences. 

Finally, there may be a difference between fast and slow players in terms of bias to 

similarity-based search as Figure 2.7b indicates. Fast players appear to abandon similarity-

based search earlier than slow players. On average, fast and slow players made 4.8 (SE = 

0.47) and 4.0 (SE = 0.52) collapsed fixations per subsequence. According to Figure 2.7b, 

fast player may made fewer fixations with consecutive subsequences. However, the number 

of fixations per subsequence remains stable for slow players suggesting that the decrease in 

the mean similarity is not caused by the variability in the number of collapsed fixations 

over consecutive subsequences. 

Using a mixed-effect regression analysis (Baayen, Davidson, & Bates, 2008), we have 

further investigated how the tendency to look at perceptually similar cards changes during 

the trial. The dependent variable in the regression is the perceptual similarity of each 

fixated card to the corresponding highlighted card (the values on the y-axis in Figure 2.7b). 

The following fixed effects were used: Subsequence is a log-transformed position of a 

subsequence in a fixation sequence. Fixation is a log-transformed position of a collapsed 

fixation within a subsequence. Variable RT is subject’s mean reaction time in seconds 

shown in Figure 2.2a. In addition, two random effects on an intercept, Subject and Trial, 

were added, each representing subjects and trials, respectively. 

Resulting coefficients for fixed main and interaction effects are shown in Table 2.1. The 

table also presents corresponding t and p values for fixed effects. The variances and 

standard errors of the random effects are depicted in Table 2.2. 

In the interpretation of coefficients, we are mainly interested in their signs. Positive 

coefficients increase perceptual similarity to the highlighted card. Hence, the corresponding 

independent variables promote the similarity-based search. The negative coefficients 

decrease perceptual similarity. Therefore, the corresponding independent variables facilitate 

the transition from the similarity-based search to dissimilarity-based search. 

Both Fixation and Subsequence have negative coefficients, supporting our assumption 

that over time, cards that subjects look at decrease in similarity to the highlighted card. The 

significant main effect for Fixation indicates that transition occurs not only within 

collapsed fixation sequence as a whole but also within individual subsequences. An 

interaction effect between Fixation and Subsequence has positive coefficient. The 
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interaction effect provides a threshold for the main effect of Subsequence after which 

subject cannot look at less similar cards anymore. It makes sense as it is impossible to look 

at cards that have more than four dissimilar attributes. 

There is a strong correlation between subjects’ mean reaction time and the tendency to 

look at cards similar to the highlighted card. The variable RT serves as a strong predictor. 

Its coefficient’s sign indicates that slower players are more biased toward similarity-based 

search than faster players. And this bias increases as mean reaction time increases. 

 

Table 2.1: The fixed effects’ coefficients, t and p values. 

 

Fixed Effects Coefficients Standard Errors t values p values 

Intercept 1.7376 0.0754 23.036 0.0001 

Fixation -0.1761 0.0158 -11.113 0.0001 

Subsequence -0.1634 0.0110 -14.812 0.0001 

RT 0.0046 0.0011 4.106 0.0012 

Fixation:Subsequence 0.0334 0.0072 4.647 0.0001 

 

Table 2.2: Variances and corresponding standard errors of random effects. 

 

Random Effects on Intercept Variances Standard Errors 

Trial 0.1037 0.3221 

Subject 0.0024 0.0495 

Experiment discussion 

Experiment results’ summary 

The main effects of Fixation and Subsequence in the mixed-effect regression analysis 

indicates that the subjects’ starting strategy of playing SET is similarity based. Subjects 

prefer to look for a set among the cards that are similar to each other and then gradually 

switch to groups of more dissimilar cards. 

One specific instance of a similarity-based strategy is the dimension-reduction strategy 

(Jacob & Hochstein, 2008). The dimension-reduction strategy can be used more than once 

(Figures 2.5 and 2.6) within the same trial and each time with different attribute value. The 

player chooses one attribute value, to which we refer as a guiding value, and starts looking 

for a set among the cards that share that value. If a player fails to find a set with the current 

value, then another guiding value is chosen, and the new group of cards is defined as a next 

search space. 

The overall strategy of dimension reduction is top-down, but the choice of a guiding value 

is heavily influenced by two bottom-up elements: (a) the size of the group of cards that 

share the value and (b) its attribute type. The importance of group size (Figure 2.6b) was 

also found by Jacob and Hochstein (2008). However, contrary to their conclusion, we have 

found that an attribute type also plays an important role (Figure 2.6a) in choosing a guiding 

value. In particular, color is preferred to any other attribute type, while shape and shading 
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are the least preferred attribute types. This result coincides with other studies, concluding 

that people prefer to operate on colors rather than on shapes (Kieras, 2010; Kim & Cave, 

1995; Pomplun et al., 2001). The number attribute also seems to be preferred to shape and 

shading, at least in trials with highlighted cards. The presence of a highlighted card can bias 

players to values of that card. Such bias can override an effect of a group size or even 

attribute type. 

Another interesting finding is the fact that within a trial, subjects decrease the use of 

dimension-reduction strategy. This reduction (Figure 2.7a) nicely coincides with gradual 

reduction in reliance on similarity (Figure 2.7b). As the game progresses, players 

increasingly look at more dissimilar cards more suitable for finding higher level sets. 

It seems that all players follow more or less these strategies. However, there are subtle 

differences between fast and slow groups of players. We found that fast players are less 

dependent on similarity than slow players (Figure 2.7b and Table 2.1). Fast players are 

initially less likely to use dimension reduction and switch faster to the dissimilarity-based 

search than slow players. 

Additional assumptions 

There are still open questions that were not answered by the data analysis. For creating a 

plausible model of an SET player, it is essential that we have a complete picture of a 

player’s behavior. In this section, we address the essential but missing aspects of an SET 

player’s strategy by referring to relevant literature or making our own assumptions. 

The two critical aspects of finding a set are reducing the search space by selecting an 

appropriate guiding value, and the search strategy itself once a guiding value has been 

selected. 

Choice of a guiding value 

Although the decision to choose a guiding value is top-down, the choice itself, we 

assume, is not top-down. This choice is defined by two components: a static task-

independent component that defines the saliency of an attribute value in the visual field and 

task-dependent factors, some of which change while the search for a set progresses. 

Task-independent components include attribute type and group size. The four attributes 

have different inherent saliency properties. The color is the most salient attribute type, and 

the number is more salient than shape or shading (Kieras, 2010; Kim & Cave, 1995; 

Pomplun et al., 2001). On the other hand, six green cards are more salient than four red 

cards because of an effect of group size on the saliency. These factors are not dependent on 

the current goal and are inherent properties of the visual object and the visual scene as a 

whole. 

Task-dependent components include the presence of a highlighted card and the current 

progress within a trial. The task for the player is to find a set that includes the highlighted 

card (if it is present). This connection of a highlighted card to the current task increases the 

relevancy of the attribute values in the highlighted card. The relevance of an attribute value, 

however, decreases once we have already tried to find a set with that attribute value. So, if 

the player has not been able to find a set among the green cards, then the task relevancy of 

the green value decreases. This decreasing relevance can explain why the similarity of 

attended cards to the highlighted card decreases: Once particular attribute values have been 

tried as a guiding value, their relevance decreases and other, more dissimilar values are 

selected to guide search. 
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For example, at the beginning of the game, most players tend to focus on the group of 

cards that share particular color or number values, as color and number are the most salient 

attribute types. However, their relevancy will decrease over time, and eventually a player 

will focus on other attribute types. 

Strategies and within-trial strategy shifts 

As described earlier, the data suggest a gradual shift from dimension-reduction to a 

dissimilarity-based strategy. 

However, so far we have no concrete evidence for the mechanisms behind such a strategy 

shift. One option is that there is an explicit meta-cognitive process tracking the current state 

of the game and timing the strategy shifts. However, a far more elegant and simpler 

explanation would be one in which a strategy shift occurs implicitly as a result of changing 

relevance of the attribute values as they are used as a guiding value. The second option does 

not require an explicit process of tracking current state and timing strategy shifts. The 

mechanism that chooses the guiding values, outlined in the previous section, does exactly 

that: Initially, the attribute values of the highlighted card will dominate the choice of 

guiding value and will, therefore, lead to similarity-based search. However, once those 

values have been tried, their relevance diminishes, and other values are chosen that are not 

attributes of the highlighted card. This will lead to a dissimilarity strategy in which a third, 

dissimilar card will be necessary to complete the set. 

Strategy implementation 

Once a guiding value is chosen, a search process is needed to try to find a set using the 

guiding value. There are two basic strategies to do this: The first is to, in addition to the 

highlighted card, pick a second card on the basis of the guiding value, and then pick a third 

card that is perceptually similar to the second card. At that point, the three cards can be 

compared to see whether they constitute a set. Even with a highlighted card, this search 

process is potentially expensive, because there are still 55 possible combinations to check. 

The use of a guiding value is helpful to look for the most promising combinations first, 

especially combinations that are potential lower level sets. 

The second strategy is to select a second card in addition to the highlighted card and 

predict what the third card should be. After making the prediction, the predicted card may 

or may not be present among the remaining cards. If it is, it completes the set. This strategy 

is much more efficient, because there are only 11 combinations of the highlighted card with 

a second card, and two of those will complete a set. Even when there is no highlighted card, 

the prediction strategy is more efficient than the similarity strategy, because there are only 

66 possible pairs, three of which are part of the set, but 220 combinations of three cards. 

However, the prediction strategy is more effortful and requires at least some experience 

with the game to be successful. 

Competitive parallelism of the two strategies 

Even though we can identify two distinct strategies, several hybrid combinations are 

possible. For example, instead of predicting all attribute values of the third card, it is 

possible to only predict two values and use these two to guide the similarity strategy. In 

fact, both strategies and all possible hybrids can be produced if we assume two parallel 

processes, a bottom-up process that scans cards based on similarity, and a top-down process 

that makes a prediction for the third card. This idea is consistent with the threaded 

cognition theory of multitasking (Salvucci & Taatgen, 2008); a bottom-up visual scanning 
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and a top-down prediction task run in parallel, not only collaborating but also competing to 

achieve the same goal. 

Competitive parallelism assumes that all players have two parallel processes independent 

of player’s proficiency. Slow players know how to predict, but they are not good at it, so 

typically the visual-scanning process will dominate performance. Faster players are 

proficient enough to make fast and accurate predictions, so the prediction process can keep 

up with visual scanning, making targeted search of a predicted card possible rather than just 

scanning on the basis of similarity. 

Competitive parallelism provides advantages over a pure sequential strategy. It provides a 

means for a more objective comparative evaluation of efficiency of one process over 

another. It prevents a one-sided choice of one process over another even if one is less 

efficient. The less efficient process has a chance to become more cost effective with 

training and rehearsal. Competitive parallelism actually provides an opportunity for slow 

players to become faster, because even a partial prediction (i.e., two attributes instead of all 

four) already provides an advantage over pure similarity-based search. 

Prediction works at a more conceptual level, and, therefore, requires a certain degree of 

proficiency that slow players may lack. Prediction is more beneficial in finding higher level 

sets in contrast to sequential perceptual comparison. However, it may provide little leverage 

against parallel bottom-up similarity detection in lower level sets. Those differences can 

explain why slow and fast players differ little in finding lower level sets and differ 

significantly in finding higher level sets. 

An ACT-R model of an SET player 

We have implemented the model using the ACT-R cognitive architecture (Anderson, 

2007). Please, refer to Appendix B for a detailed description of ACT-R's internal workings.  

Model design decisions 

Threads 

The model consists of two parallel processes (threads; see Salvucci & Taatgen, 2008) 

reflecting both top-down and bottom-up nature of a task. A bottom-up thread is responsible 

for visual processes such as choosing a scanpath or shifting attention from one card to 

another. The top-down thread is responsible for higher level processes such as deciding a 

guiding value and comparing cards. Both threads can influence each other’s processes 

indirectly. For example, the top-down thread chooses a guiding value based on what has 

already been tried earlier in the trial. However, bottom-up features such as what cards are 

visible or which card is being fixated also influence the choice. 

Algorithm for general strategy 

The model largely follows strategies that we have deduced from the data and the 

assumptions we made in the previous section. The following is the description of model’s 

general strategy: 

 

1. Focus attention on the highlighted card HC. 

a. Let 
��
�� 	be a set of four attribute values in the highlighted card. 

2. Retrieve any attribute value VDM from declarative memory. VDM does not have to 

be part of HC. 

a. Let AV be the attribute type of VDM. 
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3. Pick the attribute value ��� from 
��
�� that also has �� as attribute type. 

4. If ��� = ��� then use dimension reduction. 

a. Define search space G as a group of cards that have VHC. 

5. If ��� ≠ ��� then use dissimilarity strategy. 

a. Define search space G as a group of cards that does not have VHC. 

6. Start comparison cycles on G to search for a set (depicted in Figure 2.8). 

7. If a set is not found then go back to step 1. 

 

 
 

Implementation of both strategies in the model is emergent in a sense that model behavior 

is not hardcoded. There is no explicit control over the guiding value choice. Neither there is 

an explicit top-down control over strategy shift. The model decides all specific details of 

those steps on the fly based on a visual scene and progress of a current trial. Steps 2 and 6 

Model’s strategy

Top-down thread

Wait for bottom-up scanning to return C2

Bottom-up visual thread

Scanning

Verification

No prediction

Yes

No

Yes

Any prediction made?

Locate and attend HC

Is set found?

VC1 is a value of an attribute AV in C1

Define search space G

Locate and attend C2

Retrieve any value VDM  with an 

attribute type AV

Predict C2 values 

Attend located card

Comparison cycle

Wait for any card that has 

VDM to be attended as C2

Retrieve any attended card that was 

not chosen as C1 before

End

Locate and attend C1

Locate any card in G

VDM  = VC1

Compare HC, C1 and attended 

card C2 for a set

Wait for any card that has neither 

VDM nor VC1  to be attended as C2
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Compare unpredicted attributes for 

HC, C1 and predicted card C2

Locate and attend predicted C2
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No

Control and

data flow

Data only flow

Figure 2.8: An algorithm for searching for a set, given a specified group of 

cards G. Two shaded boxes represent two approaches that model uses in parallel 

to find a set. The shaded box on the right shows the bottom-up approach to find 

a set, and the shaded box on the left shows the top-down prediction approach. 
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are most important. The outcome of step 2 defines the strategy to be used, while in step 6 

bottom-up and top-down threads run in parallel each trying to find a set separately. 

Saliency and relevancy 

This subsection describes how model takes step 2 of the algorithm. The attribute value 

that is the most salient and relevant at the time is chosen as the guiding value VDM. Saliency 

is a constant feature within a trial, however, relevancy is not and calculated each time a new 

VDM needs to be chosen. Within the model we have used ACT-R’s activation mechanism to 

mimic both saliency and relevancy. Activation depends on several parameters such as 

values of a highlighted card, number of times the attribute value was used previously, the 

last time it was used, etc. 

The two main parameters defining saliency are attribute type and the size of the group of 

cards that have that value. Color is generally the most salient attribute type followed by 

number, while shape and shading are the least salient types. Attribute type saliency is 

simulated using ACT-R’s chunk referencing mechanism (Table 2.3). 

We have implemented an additional extension to the ACT-R visual module, which 

enables chunks in visicon (i.e., the whole visual field) to spread activation to chunks in 

declarative memory (DM) in the same manner as the chunks in buffers do. This feature was 

added to model the effect of the group size. We used a logarithmic function (see Table 2.3) 

to map the number of occurrences of an attribute value i in the visual field onto a group size 

factor fani. This mapping is similar to the spreading activation mechanism in ACT-R's 

declarative memory. 

The relevancy of a value depends on whether it appears on a highlighted card and whether 

it was used previously. The highlighted card spreads additional activation to each value it 

has. The relevancy of a value is temporarily inhibited after it has been used and no set was 

found. The time and duration of the inhibition are calculated according to Lebiere and 

Best’s (2009) short-term inhibition equation. The complete description of the parameters 

used in calculating the activation is shown in Table 2.3. 

Values for most of the constants mentioned in Table 2.3 are taken from the range of 

recommended values mentioned in ACT-R literature (see http://act-

r.psy.cmu.edu/publications/). However, we fitted the four initial numbers of references for 

attribute types. Two other parameters that required fitting are the associative weight 

parameter W and spreading activation amount Wj. The first parameter defines scale of 

influence of a group size, and the second one defines scale of an influence of a highlighted 

card. 

Combining all parameters from Table 2.3 results in following equation for calculating 

activation for attribute value i: Ai = Bi + Si + Gi - Ii + εi. The value with the highest 

activation is chosen for retrieval from declarative memory. The time cost of retrieval is 

calculated via ACT-R equation: ���� = ���� where A is an activation value and F is the 

latency factor set to 0.2, a value most commonly used in other models. 
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Table 2.3: Parameters for calculating activation for an attribute value i. 

 

Parameter 

Influence 

On 

Activation 

Implementation method 

Attribute type positive 

Base-level activation �� is calculated for each attribute value based on 

initial number of references it is assigned. An initial number of references 

(n) is set for each attribute type as following (higher number results in 

higher activation): 

• Color chunks: 40 

• Number chunks: 36 

• Shape chunks: 32 

• Shading chunks: 28 

An exact calculation was used with the decay rate of base-level learning 

(d) set to default value of 0.5. (tj) is the elapsed time since the chunk has 

been used for the j-th time. 

Group size positive 

Custom extension for ACT-R that spreads activation from the visual field 

to the DM. The associative weight parameter (W) is set to 0.7. 

fani - is a measure of how many chunks in the visual field are associated 

with chunk i. Higher fani results in more activation spread to value i: 

 � = 	! ∗ ln	(1 + '�(�) 

Highlighted 

card 
positive 

ACT-R’s equation for a spreading activation from a visual buffer. (j) 

indicates to a value in j-th slot of a chunk that is in visual module buffer. 

(fanji) is a measure of how many chunks in DM are associated with value 

in j-th slot. Higher fan results in less activation spread to value i. 

Maximum associative strength (S) is set to 4, a sufficiently high value to 

prevent negative spreading activation. 

(Wj) is the amount of activation to be spread from the value in the j-th slot 

to value i if two are associated and set to 0.13.  

*� =+!, ∗ (* − .(	('�(,�))
,

 

Frequency of 

use 

negative 

(inhibitive 

effect) 

ACT-R extension for a base-level inhibition is used with short-term decay 

rate (ds) and time scaling (ts) parameters set to 1 and 10 respectively as 

recommended by Lebiere and Best (2009). 

/� = .01	(1 + (2324)
�56) Latency of 

use 

negative 

(inhibitive 

effect) 

Random noise positive 

εi – ACT-R’s transient noise generated from logistic distribution with mean 

0 and the variance σ2. σ2 is calculated as 78 = 9:
; <8, where s is an 

instantaneous noise parameter set to 0.1. This noise ensures that model’s 

behavior differs each time even if presented with exactly same trial and 

starting conditions. 

Top-down versus bottom-up processes in comparison cycles 

After deciding which strategy to use, the model proceeds by scanning a chosen group of 

cards. This is described as a step 6 in the algorithm. Individual steps of scanning are 

described in Figure 2.8. The entire scanning can be divided into comparison cycles. In each 

cycle, the model picks two cards, further referred to as C1 and C2, to compare to the 

highlighted card. The model first chooses C1, and then C2. In each cycle, the model picks 
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as a C1 a card that was not chosen as C1 before. Hence, the number of cycles is the same as 

the number of cards that match the scanning criteria. 

The order in which cards are chosen as C1 is mostly defined by the order in which those 

cards were fixated since the scanning began. Earlier-fixated cards have a higher chance of 

being chosen as C1. The model is free to choose its own scanpath with the only restriction 

that it will not refixate on the cards it fixated before, until all other cards have been fixated. 

Two different approaches are used in parallel to make the decision about C2: bottom-up 

and top-down. In the bottom-up approach, the model continues scanning the search space 

and compares the first fixated card with the highlighted card and C1 (a box in Figure 2.8 

denoted Wait for bottom-up scanning to return C2). At the same time, the top-down 

approach tries to make a prediction about C2 based on the available rules (a box in Figure 

2.8 denoted Predict C2 values). It generates the abstract representation of C2 and asks the 

visual thread to find the card matching that representation. The success and completeness of 

the prediction depend on availability and accessibility of prediction rules. Both approaches 

compete with each other. The approach that requires less time is favored over the other. In 

other words, if the model is able to make a prediction before the visual thread fixates and 

encodes some card as C2, then prediction is favored. 

Given all three cards, the model verifies if the cards really make a set. If cards do not 

make a set, then the model goes back to visual scanning. If a set is still not found, then the 

model interrupts the scanning and refixates on the highlighted card to choose another 

guiding value. Due to limited number of cycles and the liberal way the model chooses C2, 

the search is not exhaustive, and the model can fail to find a set even if search space 

contains it. 

Prediction rules 

Predictions are made based on prediction rules. Rules are declarative chunks that have to 

be retrieved from memory when necessary. An example of such a rule is Given(Textured, 

Solid) ⇒	 Expected(Open). It should be noted that Given(Solid, Textured) ⇒	
Expected(Open) and the previous rule are treated as different ones. There are also rules for 

similarity such as Given(Red, Red) ⇒	Expected(Red). In total, the model can have 36 rules: 

nine rules for each attribute. 

Model results 

In each trial, the model is presented with 12 cards. One card is always highlighted, 

indicating that it belongs to a set. The model has to find the other two cards forming a set. 

The same 30 trials from the experiment with human subjects were used. 

We created eight versions of the model. The only difference between model versions was 

the availability of prediction rules. The first model had no prediction rules in DM. The 

second model had 12 prediction rules for predicting similarity of the corresponding 12 

attribute values (e.g., Given(Red, Red) ⇒	Expected(Red)). The third model had 16 rules: 12 

similarity rules and four rules for predicting dissimilarity, one for each attribute. The 

number of available rules in subsequent models was increased in a similar manner by four. 

Each version of the model was run 10 times. 

Reaction times 

Figure 2.9a shows reaction times for all eight models averaged over four difficulty levels. 

As was hypothesized previously, the model’s reaction time gradually decreases as the 

model becomes better at making predictions. The model with zero rules is the slowest 
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model, and the model with all rules is the fastest model. For low-level sets, there is little 

difference in RT between different versions of the model. However, the difference is quite 

high for trials with high-level sets. This effect resembles the one found in human data. 

Overall, Figure 2.9a suggests that the main boost in performance through predictions is 

produced by trials with high-level sets. 

 

 
 

In Figure 2.9b, the mean reaction times (dashed lines) of the fastest and slowest models 

are compared to the mean reaction times (solid lines) of corresponding fast and slow groups 

of human players. As it can be seen, the models closely reproduce reaction times of both 

slow and fast human players. The collapsed fixation sequences produced by these two 

models were further compared to human data from fast and slow groups. 

Dimension reduction 

Both the fast and slow models are quite good at replicating the subjects’ tendency to use 

dimension reduction and preference to certain attribute values. As an example, the fast 

model’s (Figure 2.10a) and the subject’s (Figure 2.5a) collapsed fixation sequences from 

the same trial are compared. The model’s collapsed fixation sequence in Figure 2.10a 

closely resembles the sequence in Figure 2.5a produced by the subject. At the beginning of 

the trial, the model also preferred to look at the green cards and later on switched attention 

to a group of cards with oval shape in the same manner as human subjects did. This 

decrease is consistent with behavior of the human subjects. 

It is obvious from multiple model runs that half of the times, the model prefers to look at 

the green cards at the beginning of the trial, although they form the second-largest group 

after cards with an oval shape (Figure 2.10b). Nevertheless, the fact that color is the most 

salient attribute type is enough to compensate for a smaller group size. Defining separate 

saliency values for attribute types works quite well for modeling players’ bias to an 

attribute type. 
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Figure 2.9: (a) Reaction times of eight models averaged over four difficulty 

levels. (b) Reaction times of the slowest and fastest models compared to the 

reaction times of the human players in trials with highlighted cards. 
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It can be observed from Figure 2.10 that the model favored shape in the later stage of the 

game, which is the least salient attribute type. This is due to the effect of a group size. Oval 

shape compensates its inherent lack of saliency with bigger number of occurrences. The 

fact that oval value provides strong competition to green value even at the beginning of the 

trial suggests that the effect of a group size is stronger than it should be (compare Figure 

2.10b to Figure 2.5b). 

Overall, the saliency and relevancy mechanisms work well in modeling subjects’ strategy 

to use dimension reduction. Combined data from both models show similar order of 

preference for the attribute types as the human subjects. Figure 2.11 shows that, in general, 

models clearly prefer color and number while they make little difference between shape and 

shading. Both models gradually stop using dimension reduction if it fails to find a set 

(Figure 2.12a). This behavior is again consistent with behavior of human subjects. 
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Figure 2.10: (a) Model’s collapsed fixation sequence diagram for trial 

“lvl3_15.” The model needed 36 collapsed fixations to find the set. (b) Changing 

proportion of blocks where the models used dimension reduction in trial 

“lvl3_15.” Proportions are calculated from both slow and fast models’ data. 

Proportions are shown as a function of collapsed fixation position in the 

sequence and attribute value. 
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However, models are more dependent on dimension-reduction strategy than the human 

subjects. We attribute this difference to the difference in manner of scanning between 

model and human subjects. We discussed earlier that human subjects can get distracted and 

produce wandering fixations in the middle of the scan. On the other hand, the model is 

precise and does not produce such fixations. 

 

 
 

Finally, as Figure 2.12a shows, the slow model is more likely to use dimension reduction 

in the latter part of the trial than the fast model. Overall, the fast model is less biased toward 

dimension reduction than the slow model, showing an effect similar to one produced by the 

fast human players (Figure 2.7a). 

Dissimilarity-based search 

Our experiment revealed that the subjects gradually switch from dimension-reduction 

strategy to dissimilarity-based search (Figure 2.7b). To test whether the model exhibits the 

same pattern of behavior as the human players, the same type of analysis was done on 

collapsed fixation sequences produce by the model. The results can be observed in Figure 

2.12b. There are gradual transitions from the similarity- to dissimilarity-based search for 

both slow and fast models. The difference between fast and slow models with respect to 

bias to the perceptual similarity is smaller than in human players; however, it is present. It 

can be seen that the graph for the fast model comes to an abrupt end at the 10th 

subsequence. This is due to the fact that the fast model rarely required more than 10 

subsequences to find the set. 

General discussion 

Bottom-up and top-down processes 

Improvement in playing SET can be explained by the interplay between the two types of 

processes. Slow players initially tend to rely on bottom-up processes, because their top-

Figure 2.12: (a) Changing proportion of trials in which dimension reduction was 

used. The proportions are calculated as a function of collapsed fixation position 

in the sequence. Results are shown separately for slow and fast models. (b) A 

mean overall similarity of all cards in a subsequence to a highlighted card shown 

separately for slow and fast models. 
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down strategies are too slow to keep up. Improvement in the game is characterized by an 

increase in efficiency and involvement of top-down processes. 

A similar development was found in studies of other games such as Scrabble (Halpern & 

Wai, 2007). In that study, slow and fast players also differed in the interplay between top-

down and bottom-up processes. Slow players prefer to rotate and rearrange the letters 

physically to check whether they form a word. It makes players very much dependent on 

bottom-up motor processes and perceptual stimuli representing the letters. On the other 

hand, fast players prefer to rotate and rearrange the letters mentally. Hence, a fast player 

prefers to use top-down processes to manipulate the abstract representations of the letters. 

Another example of a shift in balance between bottom-up and top-down processes is 

observed in Tetris. Initially, it was believed that slow players prefer to rotate and translate 

tokens mentally to check whether that piece will fit at various parts of the screen, whereas 

more experienced players prefer to rapidly manipulate the tokens physically (Kirsh & 

Maglio, 1994). However, a later study showed that players with extensive experience prefer 

to rotate and translate pieces mentally rather than physically (Destefano, Lindstedt, & Gray, 

2011). This means that they no longer require perceptual input to verify their solution. This 

is similar to learning in Set, where prediction processes make it unnecessary to “see” the 

third card to infer it is part of the set. 

In light of these findings, we conclude that such shift in balance between top-down and 

bottom-up processes may be a very common learning process. 

Implications of this study 

Threaded cognition for bottom-up and top-down processes 

In earlier studies, fast players substitute bottom-up with top-down processes through 

substitution of physical with abstract, but otherwise identical, actions. However, our model 

showed that fast players can combine bottom-up and top-down processes beyond that of 

simple substitution. The fast model is able to perform actions, such as prediction, that are 

otherwise beyond capabilities of bottom-up processes. This capability requires viewing 

bottom-up and top-down processes as parallel and competing processes. Earlier, we 

referred to it as a competitive parallelism. This is in contrast to conventional sequential or 

hierarchical view, but in line with theory of threaded cognition (Salvucci & Taatgen, 2008, 

2011). However, in addition to the separation of processes into threads by tasks, we also 

have a division of processes into threads by their types within a single task. As such, this 

study can be viewed as a theoretical and practical example of threaded cognition and can 

contribute to general understanding of this theory. 

Having two threads for the same task, competitive parallelism, has a direct implication in 

learning. Competitive parallelism ensures that when the same task can be accomplished by 

both bottom-up and top-down processes, training will ensure the most suitable one will be 

chosen eventually. Competitive parallelism can be a cornerstone for problem-solving tasks. 

For example, it can explain how Tetris or Scrabble players minimize cost of mental 

operations while still doing the same task physically. Further study is needed to confirm 

those assumptions. 

Implicit decision making 

There are several interesting findings in this research. SET players can apply more than 

one strategy during the game, similarity and dissimilarity based. Our model has shown that 

shifts between those strategies can occur as a result of evolving activations triggered by 
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basic bottom-up elements such as inherent memory associations, inhibition, and influence 

of perceptual stimuli. Such a choice of a strategy is not a deliberate explicit decision, but 

rather an implicit bottom-up decision. Perhaps, absence of explicit meta-cognitive control 

can explain why SET players are often unable to clearly describe their strategy. 

Furthermore, the similarity-based strategy is bottom-up and dissimilarity-based strategy is 

top-down. It suggests that there is not only an implicit shift in strategy but also in type of 

processes. All together, it suggests that bottom-up decision may have a bigger role in 

cognitive processes and should be paid more attention in future studies. 

As a possible line of future research in this direction, we would like to draw similarity 

between the way our models shifts between strategies and perceptual decision-making 

models based on decision threshold. These mathematical models assume integration of 

sensory evidence until decision variables reach decision threshold, after which a categorical 

choice is made from alternatives (Smith & Ratcliff, 2004; Usher & McClelland, 2001). 

Similarly in our model, evolving activation in memory influenced by items in the visual 

field can be viewed as an accumulation of sensory evidence, and resulting probability of 

retrieval as a decision threshold. However, mathematical models provide no information 

about processes that govern the contextual regulation of the perceptual decision making 

(Domenech & Dreher, 2010). In contrast, our model provides a set of perceptual and 

cognitive processes backed by theory. As such, integration of mathematical and ACT-R-

based models may provide much more insight in domains of decision making and problem 

solving in general. 

Predictability and learning in problem-solving task 

The ability to predict is a useful, but understated, in our opinion, process of human 

cognition. There are limitations on the amount of visual information a human brain can 

process, and many consider selective attention shifts as mechanisms to deal with the 

limitation. However, recent studies suggest that prediction also plays an important role in 

mitigating processing limitations (Alink, Schwiedrzik, Kohler, Singer, & Muckli, 2010; 

Soga, Akaishi, & Sakai, 2009). Important parts of visual stimuli that are not processed are 

predicted based on previous experience. Furthermore, prediction is used to anticipate future 

stimuli. A recent study showed that predictability of the environment has significant 

influence on the decision-making process (Domenech & Dreher, 2010). 

In this article, we showed how predictability of the environment in combination with a 

player’s proficiency influences decision making. The fact that, in our model, difference in 

ability and accuracy of prediction was able to explain major difference between fast and 

slow players suggests that prediction possibly has important role not only in decision 

making but also in the learning process. 

Conclusion 

It is our hope to contribute to the understanding of visual cognition where both internal 

conceptual knowledge and external perceptual stimuli converge in a goal-driven task. As 

one step toward this goal, we have studied the importance of perceptual and cognitive 

processes in complex tasks requiring both internal planning and reaction to perceptual 

stimulus from the environment. 

First, there is an interaction between two types of process in accomplishing an immediate 

task. Such interaction involves both a sequential cooperation and a parallel competition 
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with emphasis on the latter. Such competition gives a chance for top-down processes to 

gain edge over faster, but limited bottom-up processes. 

Next, both bottom-up and top-down processes are involved in decision making. On the 

one hand, bottom-up processes can influence top-down decision. On the other hand, 

bottom-up process, such as evolving memory activations, can result in decision without 

need of top-down control. This suggests that decision making may not be an explicit 

process only. 
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Abstract 

This paper introduces a new vision module, called PAAV, developed for the 

cognitive architecture ACT-R. Unlike ACT-R’s default vision module that was 

originally developed for top-down perception only, PAAV was designed to 

model a wide range of tasks, such as visual search and scene viewing, where pre-

attentive bottom-up processes are essential for the validity of a model. PAAV 

builds on attentive components of the default vision module and incorporates 

greater support for modeling pre-attentive components of human vision. The 

module design incorporates the best practices from existing models of vision. 

The validity of the module was tested on four different tasks. 

  



Chapter 3 | 39 

Introduction 

This paper introduces a general-purpose vision module called PAAV, which stands for 

Pre-attentive And Attentive Vision. As the name suggests, the new module incorporates a 

greater support for bottom-up visual components that are considered pre-attentive in nature, 

such as multiple feature dimensions to describe visual objects, peripheral vision with 

differential acuity, iconic visual memory and a decision threshold. The module was 

developed as an integral part of ACT-R cognitive architecture (Anderson, 2007) that 

provides a necessary top-down, attentive layer. The reader can refer to Appendix B for a 

more detailed description of the ACT-R architecture. Here, we will describe only essential 

details necessary for introducing the PAAV module. By being part of ACT-R, PAAV 

should be able to model wide range of tasks where both top-down and bottom-up visual 

guidances are important. ACT-R already has a default vision module and a few extensions 

for it. However they have drawbacks that PAAV is aimed to solve. 

ACT-R’s default vision module can be described in terms of a visicon and two buffers: 

visual-location and visual. Visual-location and visual buffers essentially represent WHERE 

and WHAT components of a visual system. The visicon represents the visual scene 

containing visual objects with which an ACT-R model can interact. The visicon is 

considered to be a part of the environment (a monitor screen) rather than part of the model. 

A model can send a WHERE request to the visual-location buffer to find the location in the 

visicon of a potential visual object to encode. Within this request, the model can specify 

criteria for visual object such as its kind, color, coordinates or size. Given this request 

vision module randomly chooses one of the visual objects from the visicon that exactly 

matches the given criteria and puts its location information in the visual-location buffer. 

This entire process is instantaneous with no time cost. Next, model can send a WHAT 

request to the visual buffer to encode the object at the chosen location of visicon. A WHAT 

request assumes fixed execution times for both saccade and encoding that in total require 

85 ms. This value, although it can be changed by the modeler through a dedicated 

parameter, is considered as a de facto standard in ACT-R. 

EMMA (Salvucci, 2001) is arguably the most used extension to ACT-R’s default vision 

module. EMMA explicitly models saccades including preparation and execution times, path 

generation and variable landing points. However, EMMA’s major contribution is in its 

ability to model covert attention shifts through variable encoding time dependent on visual 

object’s frequency and eccentricity. 

The disadvantage of the default vision module and EMMA is their optimization toward 

reading tasks or tasks with a relatively simple visual environment where bottom-up 

perceptual processes can be ignored without sacrificing the model’s plausibility and 

performance. However, ACT-R’s vision module is not suitable for tasks where visual 

stimuli are described with multiple feature dimensions. Such tasks often require theories of 

scene perception and visual search that are not part of current vision module. The issue is 

more pressing if one considers the importance of embodied cognition (e.g., Clark, 1997) in 

problem-solving tasks (Nyamsuren & Taatgen, 2013b) and in everyday human activities in 

general (Land, Mennie, & Rusted, 1999). Embodied cognition assumes that cognitive 

control is not purely goal based, but it is also driven perceptually. The simplest example of 

it is an interference of the salient feature during the task (Theeuwes, 1992). When subjects 

are asked to look at the scene they tend to look at the most salient parts first. Those salient 

parts of the scene can interfere with task even if subjects are explicitly asked to not to look 

at them. 
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Architecture of the PAAV module 

Figure 3.1 provides an overall view of PAAV's architectural components as it is 

integrated with ACT-R's default vision module. The figure also shows graph of internal 

workings of ACT-R's declarative retrieval. Also shown is how the retrieval processes is 

influenced by spreading activations from the vision buffer and PAAV's iconic memory. 

Details of each of the constituent components of PAAV and corresponding cognitive 

theories are discussed in the following subsections. 

 

 

Feature dimensions 

In PAAV every visual object can be characterized by five basic features: color, shape, 

shading, orientation and size. The features are chosen because of their pop-out nature and 

importance in guiding visual attention (Wolfe & Horowitz, 2004). Each of those features 

can have a wide range of values, such as, red and green for color; and oval and rectangle for 

shape. Currently, PAAV does not support modeler specified custom features. However, it is 

included as a future implementation milestone. 

Peripheral vision 

The current implementation of ACT-R’s vision assumes that everything in a visicon is 

visible to the vision module and consecutively available for information processing. 

However, human vision is limited in what it can see, especially in the extra-foveal region 

(Rayner, 1998). PAAV introduces limitations on visibility by assuming that a visual object 

is only visible if at least one of five features of that object is visible. Visibility of a feature 

is calculated with an acuity function. We have adopted a modified version of the 

psychophysical acuity function proposed by Kieras (2010). Kieras’ original acuity function 

states that for an object’s feature to be visible the object’s angular size s, with some 

Gaussian noise added to it, must exceed a threshold calculated as a function of eccentricity 

e: 

 

2ℎ��<ℎ0.
 = ��8 + ?� + @ 
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real-world scene (visicon)
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visual iconic memory
of real-world scene

bottom-up and top-down 
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visual buffer with 
encoded object
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+
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retrieval probability

top-down activation
from encoded object

+

Figure 3.1: Internal workings and external connections between vision, 

declarative modules. 
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The free parameters a, b, c and v are to be adjusted for each particular feature. The 

function works quite well for modeling differential acuity of features. However, the 

quadratic form in the function makes it less suitable when the object size is particularly 

small. For example, in their feature search experiment for color, Treisman and Gelade 

(1980) used visual stimuli of 0.8º×0.6º in size scattered over area of 14º×8º. This feature 

search experiment cannot be replicated with the above acuity function for color unless 

parameter a is assigned an extremely low value that is well below the 0.035 used by Kieras 

(2010). 

PAAV uses a modified version of the acuity function to mitigate issue above: 
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The constant c has been removed since it has no significant influence when object size is 

reasonably large and too much influence when object size is quite small. Similarly, the 

Gaussian noise has been removed because of its tendency to introduce too much or too little 

acuity variation depending on the object size. Next, the coefficient b has an opposite sign. It 

results in less steeper increase in threshold when an eccentricity increases. It also removes 

the necessity of giving unreasonably small value to coefficient a when object size is small. 

The free parameter a has been refitted again to 0.104, 0.147, 0.14 and 0.142 for color, 

shading, size and shape respectively. The parameter b has been fitted to 0.85 for color and 

0.96 for all other features. We are still in process of fitting parameters for the orientation 

feature. 

Iconic visual memory 

Everything PAAV perceives from the visicon is stored in iconic memory. Visual features 

of every object visible via peripheral vision are stored in this memory. As such, the content 

of iconic memory is not necessarily a complete or even a consistent representation of the 

objects in the visicon. 

Information in iconic memory is not treated as consciously perceived visual properties. It 

is rather perceived as bottom-up visual stimuli on which bottom-up processes can operate. 

Iconic memory is trans-saccade persistent. Items in iconic memory are persistent for a short 

duration of time if they are not visible through peripheral vision anymore. The parameter 

for persistence time is currently set to 4 s, as determined by Kieras (2011), to be a lower 

bound for a visual memory. 

Iconic memory is a model’s internal representation of a visicon, otherwise visual scene. 

As such, all WHERE requests are handled with respect to the content of iconic memory via 

a newly defined abstract-location buffer, a replacement to now depreciated visual-location 

buffer. A request may include desired criteria including any of the five feature dimensions 

or location. 

Visual activation 

Each visual object in iconic memory is assigned an activation value. The location of the 

visual object with the highest activation value is returned upon a WHERE request. The 

activation value is calculated as a sum of bottom-up and top-down activation values. It is 

adapted from the concept of an activation map used by Wolfe (2007) in his model of a 

visual search. 
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Bottom-up activation 

The bottom-up activation for a visual object i is calculated based on its contrast to all 

other objects in iconic memory with respect to each feature dimension k: 
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The dissim(vik, vjk) is the dissimilarity score of two feature values of the same dimension. 

It is a simplification of a bottom-up activation based on the difference in channel responses 

used in Guided Search 4.0 (Wolfe, 2007). If two values are the same then dissim(vik, vjk) = 

0, otherwise dissim(vik, vjk) = 1. The dissimilarity is weighted by a square root of a linear 

distance dij between two objects. Thus the objects farther away contribute less to a contrast-

based saliency of the visual object i than the objects closest to it. 

Top-down activation 

In a WHERE request a model can provide feature values as desired criteria for the next 

visual object to be located. Those feature criteria are used to calculate the top-down 

activation value for each visual object in iconic memory. Given a feature criteria k, the top-

down activation for visual object i is calculated as: 
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sim(fik, fk) is a similarity score of the feature value fk in WHERE request to a value fik with 

the same feature dimension in visual object i. This similarity score is 1 for an exact match 

and 0 for a mismatch. If the value fik is not accessible from iconic memory then the 

similarity score is 0.5. Thus uncertainty is preferred to certain dissimilarity. 

Total visual activation 

The total activation for visual object i is the sum of bottom-up and top-down activations: 

 

��� = !V� ∗ ��� +	!W� ∗ ��� + F 

 

WBA and WTA are the weight parameters for the bottom-up and top-down activations 

respectively. They are set to 1.1 and 0.45. In correspondence with Wolfe (2007), those 

weights control the unintentional and intentional attentional captures. The bottom-up 

activation is given a higher weight to compensate for the distance dij adjustment, which 

results in the lower bottom-up activation value in comparison to the top-down activation 

value. N is noise from a logistic distribution with variance σ2 calculated as a function of a 

parameter s: σ2 = s2π2/3. s is set to 0.2 by default. 

Saccade and encoding 

After a visual object has been located with a WHERE request, a model can send a WHAT 

request. This is essentially the same encoding processes of a visual object from the visicon 

as in ACT-R’s default vision module. However, PAAV assumes that the saccade that 
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precedes the encoding has a variable execution time dependent on the saccade’s amplitude. 

Prior to a saccade execution, PAAV calculates its duration and landing point. Salvucci 

(2001) described a set of formulas to calculate those variables. For calculating the 

execution duration, we used EMMA’s default parameters: 20 ms as a base execution time 

plus additional 2 ms for an every degree of angular distance covered by a saccade. 

Differently from Salvucci (2001), we have used two Gaussian distributions around the 

center of the object to calculate saccade’s landing position. The standard deviation for 

distribution along X axis is calculated as sg times of the object’s linear width, where sg is a 

gaze noise parameter set to 0.5. In a similar manner, the standard deviation for Y axis is 

calculated using object’s linear height. Such implementation is in accordance with theory 

that the saccade’s landing position depends on the size of a visual stimulus (Rayner, 1998). 

Upon completion of a saccade, PAAV starts encoding. The parameter for encoding time 

is 50 ms. It is in line with findings that the sufficient information is encoded in the first 45–

75 ms of a fixation for an object identification to occur (van Diepen, De Graef, & 

d’Ydewalle, 1995). Except eccentricity, Salvucci (2001) used word frequency to calculate 

variable encoding time. However, we believe this approach is not applicable to PAAV 

where visual object is defined along multiple dimensions. Hence, further study is needed to 

investigate the object’s encoding process in more details sufficient for proper computational 

modeling. 

Visual decision threshold 

One of the challenging problems in a visual perception is how does the visual system 

recognize the absence of a desired visual object. For example, humans can spot the absence 

of a salient object as fast as its presence in a visual field (Figure 3.2). Similarly, given a 

WHERE request with specific criteria, how does PAAV know that the desired object is not 

in iconic memory. One obvious solution is to attend every object in visicon and stop when 

there are no more objects to attend. However, visual search paradigms, such as feature 

search, show that it is not the case. The visual system is much more efficient and does not 

require fixation on every item to detect an absence of a target (Treisman & Gelade, 1980; 

Wolfe, 2007). 

 

 
 

PAAV incorporates the concept of a visual decision threshold to decide whether any of 

the objects in iconic memory will match a given WHERE request. A partial solution is to 

ignore every object that has zero top-down activation due to complete mismatch. However, 

results from tasks, such as conjunction search, show that a visual search can be efficient 

even when distracters partially match the target. PAAV should also be able to filter out 

objects that match only partially. This is done via simulation of visual grouping based on 

top-down activation. Given a WHERE request, PAAV returns some object i. Let’s assume 

Figure 3.2: Humans can spot an absence (a) of a red object in field of green 

objects as fast as its presence (b). 

(a) (b)
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that, at the time of WHERE request, the distance between object i and the gaze position was 

dTh, and object i’s top-down activation was TATh. When object i is encoded these two values 

are stored and used as a threshold for the consecutive WHERE requests. In the following 

WHERE requests PAAV completely ignores every object j in iconic memory that has TAj ≤ 

TATh and dj ≤ dTh where dj is a distance between object j and gaze position. Top-down 

activation serves as a natural threshold for object selection. Every time a model encodes an 

incorrect object, the acceptance threshold for the next WHERE request increases up to the 

activation value of that object. The distance dTh provides a measure that PAAV uses to 

judge whether it can reliably compare two top-down activation values. It is a simulation of 

a visual grouping where a cluster of similar objects is grouped together. The dTh can be 

viewed as an approximate radius of the cluster. 

Step by step example 

Let us consider an example in which the model is looking for a red square, but there are 

only three gray squares in the iconic memory. The example is depicted in Figure 3.3. In this 

example the model is able to notice the absence of a red square after only one fixation. 

When the model sends the first WHERE request, the module calculates distance dj 

between each object j in iconic memory and model’s current gaze position (depicted as a 

black cross). It also calculates the top-down activation TAj for every object (for the sake of 

simplicity the bottom-up activation is ignored). All objects receive a top-down activation of 

one for matching the requested shape feature. Since all objects have the same activation 

values, let us assume that the module randomly returns the location of the second object as 

the next object to be fixated. The state of iconic memory after the first WHERE request is 

depicted as state A in Figure 3.3. 

 

 
 

The first WHERE request is followed by WHAT request. Given this request, the module 

stores the value of d2, the distance between the current gaze position and the second object, 

as the distance threshold dTh. The module also stores the second object’s top-down 

activation value TA2 as an activation threshold TATh. After those steps, the module triggers a 

saccade execution, changes the gaze position to the location of the second object and 

encodes the object. At this point iconic memory transitions into state B. 

Since the encoded object is not a red square, the model sends a second WHERE request. 

However, this time the model includes the distance and top-down activation thresholds as 

Figure 3.3: Example usage of a visual decision threshold. 
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request parameters along with the color and shape values. The threshold parameters state 

that if the object’s distance from current gaze location is less than distance threshold dTh 

then the object’s top-down activation should be higher than the activation threshold TATh 

for the object to be considered a next valid destination to be attended. So, in the current 

example, there are two unattended objects in iconic memory (state C in Figure 3.3). The 

distances to both objects from the current gaze location, seven and eight respectively, are 

less than threshold distance of 10. Therefore, both objects should have a top-down 

activation that is higher than activation threshold of one. This is not the case since both 

objects again have a top-down activation of only one because of the color mismatch. 

Hence, the PAAV module lets the model know that there are no more locations to attend. In 

turn, the model knows that there is no red squared object in iconic memory. 

In the example, three gray objects are treated as a cluster of similar objects rather than 

three individual objects each needing separate attention. The distance threshold dTh can be 

viewed as a maximum radius of the cluster, while activation threshold TATh is a maximum 

dissimilarity threshold within which objects can be considered members of the cluster. 

Spreading activation from iconic memory 

Lastly, PAAV module introduces spreading activation from visual iconic memory to 

declarative memory. It has long been observed that visual stimuli can influence the result of 

a memory retrieval (Wais, Rubens, Boccanfuso, & Gazzaley, 2010). PAAV’s spreading 

activation mechanism was developed to replicate this cognitive process. 

ACT-R’s declarative memory is a long term memory where knowledge is stored in the 

form of chunks with slots. One chunk usually represents one concept, while concept 

properties can be described through values assigned to chunk slots. The model can retrieve 

only one chunk at the time, and, when there are several chunks that match the retrieval 

request, the one with the highest activation value has the highest probability of retrieval. 

There are can be different sources of activation for a chunk, and chunk’s total activation is a 

sum of activations from all available sources. 

In the PAAV module, visual objects in iconic memory also serve as sources of activation. 

Visual feature values from all visual objects spread activation to all chunks in declarative 

memory that have the same visual feature values as slot values. For example, each green 

object in iconic memory spreads activation to all green objects in declarative memory. Let 

us assume there is a chunk k in declarative memory, and it receives a total spreading 

activation of Sk from iconic memory. Then Sk is calculated as: 

 

*I = ! ∗+(* + .(	(1 + '�(�I))
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V is a set of all slots from chunk k that have any visual feature value as a slot value. fanik 

is a normalized value indicating a number of visual objects in iconic memory that have the 

same feature value as the chunk k in its slot i. In ACT-R fanik has to be normalized because 

a chunk, technically, can have infinite number of slots and the same value in two or more 

slots. We will not go into the details of normalization since it is ACT-R specific. S, a 

parameter for the minimum associative strength, indicates the minimum amount of 

activation that should be spread. W, a parameter for association weight, is a weight of total 

spreading activation from iconic memory. By default, S and W are set to 0 and 0.7 
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respectively. With the addition of Sk the default activation equation for declarative memory 

changes to: 

 

�I = �I + *I + AI + YI + *I 

Validation models 

This section describes two models that do visual search tasks and a more complex model 

of a player for a game of SET that requires both top-down and bottom-up cognition. All 

models are based on ACT-R with the default vision module replaced by the PAAV module. 

The tasks are simple, yet demand complex cognitive and perceptual processes, and require 

most of the components of the PAAV module described in this paper. Hence, those tasks 

serve as a good way to validate the PAAV module. All models use the same default values 

for PAAV parameters described in this paper with the only exception that top-down 

activation weight WTA is increased to 3.0 in the model of SET to account for a higher top-

down cognitive load. 

A model of feature and conjunction searches 

The first model was created to do feature and conjunction searches. Both of these visual 

search tasks involve finding a target among a set of distracters. In a feature search task the 

target differs from distracters by a single feature such as color (Figure 3.4a). In a 

conjunction search the target can differ from distracters by either of two features (Figure 

3.4b). A feature search is usually an efficient search with reaction time being independent 

of a number of distracters. On the other hand, reaction time in a conjunction search 

increases with a number of distracters. Those results are consistent among different studies 

(e.g., Treisman & Gelade, 1980; Wolfe, 2007; Wolfe, Cave, & Franzel, 1989). 

The goal in feature search was to find a red rectangle among green rectangles. In a 

conjunction search, the model had to find a red rectangle among green rectangles and red 

ovals. In each trial values for both shape and color were present in near equal amount. 

The following experimental conditions were set for the model. In both types of visual 

search tasks, the set size ranged from 1 to 30. For each set size, there were 500 trials where 

a target was present and another 500 trials where a target was replaced with a distracter. In 

total, there were 6000 trials in each of feature and conjunction search tasks. The screen size 

was 11.3º×11.3º, and the size of each object was 0.85º both in width and height. Within the 

screen, objects were positioned in a random pattern with the constraint that they should not 

overlap. The model had to press either “P” or “A” for target being either present or absent. 

The time of key press was considered as trial end time. The model was reset after each trial. 

 

 
 

Figure 3.4: Examples of feature search (a) and conjunction search tasks (b). In 

both tasks the red rectangle is a target. 

(a) (b)
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Figure 3.5b shows the model’s mean reaction times in both feature and conjunction 

search tasks each averaged over trials of the same set size. The black solid line is for feature 

search task where target was present, and black dashed line is for feature search task where 

target was absent. 

 

 
 

In feature search task the model was asked to find any red object. The resulting RT is 

mostly independent of set size and averages to 446 ms when a target is present and 641 ms 

when a target is absent. It is consistent with experimental findings where RT for positive 

trials is also around 430 ms and for negative trials is 550 ms (Treisman & Gelade, 1980; 

Wolfe, 2007). The model RT remains the same in positive trials due to very high bottom-up 

activation the target receives due to its color contrast to homogeneous surrounding objects. 

Top-down activation from the matching color also contributes to the overall saliency of the 

target. However, bottom-up activation alone is enough to make the target salient enough to 

attract almost immediate attention. In negative feature search trials all objects in iconic 

memory have zero top-down activation. It takes the model few fixations to realize absence 

of a top-down activation after which the model stops searching. As a result, model also 

produces flat RT line independent of a set size, although slightly higher than in positive 

trials. 

In a conjunction search task the model was asked to find any red rectangle. Figure 3.5 

compares the RT produced by the model to the RT3 obtained by Treisman and Gelade 

(1980) from their experiment with human subjects. The standard errors for the model RT 

are too small, and thus are not shown in Figure 3.5b. As the blue lines in Figure 3.5 indicate 

the RT in both positive and negative trials rise as the set size increases. The slopes, 

however, are different with negative trials having a significantly higher slope. Linear 

regression of model’s RT on set size gives intercept of 459 ms and 646 ms for positive and 

negative trials respectively. The slopes are around 23.2 ms/item and 53.8 ms/item. The 

model results can be compared to those obtained in previous studies (Table 3.1).n this task 

the distracters are not homogenous. They vary by both color and shape. As a result, there is 

no guarantee in positive trials that a target will have a higher bottom-up activation than 

distracters. However, the target always receives higher top-down activation than any other 

object in iconic memory since it has both matching color and shape. When a set size is 

small the target’s top-down activation is enough to compensate for smaller bottom-up 

                                                            
3 Confidence intervals or standard errors are not available for human data in feature, conjunction and comparative 

visual search tasks due to lack of the data in original papers. 

Figure 3.5: (a) Mean reaction times of human subjects in conjunction search as 

reported by Treisman and Gelade (1980); (b) mean reaction times in feature and 

conjunction search tasks produced by our model. 
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activation, and the target almost immediately attracts attention as the most salient object. 

When the set size is big, there is a higher chance that the target will get significantly lower 

bottom-up activation than a distracter, which then cannot be compensated by higher top-

down activation. Consequently, those distracters with a higher overall activation are 

attended first which results in RT increasing with set size. 

 

Table 3.1: Comparison of the results of the model’s linear regressions of RT on set size to 

results of linear regression from similar experiments with human subjects. 

 

 Trial type 
Slope 

(ms/item) 

Intercept  

(ms) 

Model data 
Positive 23.2 459 

Negative 53.8 646 

Treisman and Gelade, 1980 
Positive 28.7 398 

Negative 67.1 397 

Wolfe, Cave and Franzel, 1989 
Positive 7.5 451 

Negative 12.6 531 

 

In negative conjunction trials the model should know when to stop the search and report 

the absence of the target. Since most of the distracters either match color or shape with a 

target, there are few objects that have zero top-down activation. Hence, the model had to 

rely on visual decision threshold to filter out partially matching distracters. The model 

requires on average 53.8 ms/item in negative trials indicating that the model does not need 

to fixate on every object to realize the absence of a target. Hence, top-down activation 

serves quite well as a visual decision threshold. 

Considering the variations between different studies, the model gives a good fit to 

experimental findings from previous studies with a slightly higher intercept for negative 

trials than that found in experiments with human subjects. This is probably due to the fact 

that the corresponding RT line (Figure 3.5b) is not strictly linear, and as a result has an 

elevated intercept for an entire linear function. We are still in process of investigating what 

causes the slightly increased RT for those trials. 

A model of comparative visual search 

The second model does a comparative visual search, a paradigm proposed by Pomplun et 

al. (2001). The task involves detecting a mismatch between two, otherwise equal, halves of 

a display referred to as hemifields (Figure 3.6). The task is a simplified version of the 

traditional picture matching task (Humphrey & Lupker, 1993) with a major difference that 

it does not require image processing. 

For the model of comparative visual search, we set the screen size to 24º×16º, and the size 

of each object was 0.6º both in width and height. Those are the same conditions used in the 

original experiment (Pomplun et al., 2001). The screen was divided vertically in two halves, 

hemifields. Each hemifield contained 30 objects varying in shape (rectangle, oval and 

triangle) and color (red, green and blue). Each color and shape value was represented in a 

trial in an equal quantity. Positions of the objects were generated randomly with minimum 
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margin of 10 pixels from the boundaries of the screen. Two hemifields were identical 

except one object, the target, which mismatched in either color or shape. The target was 

chosen at random among 30 objects as well as the type of mismatch. In total, the model had 

to do 10,000 trials where half of the trials had targets that mismatched color and the other 

half that had targets with mismatched shape. The model was not aware of the type of 

mismatch it had to find in a trial. The model was reset after each trial. 

 

 
 

Table 3.2: Comparison of model’s mean RTs to those reported by Pomplun et al. (2001). 

All RTs are in ms. 

 

 Color Shape Total 

Model 9051 9197 9124 

Pomplun et al. (2001) 9903 11997 10950 

 

The model used a very simple algorithm to do visual search. The model starts from a top-

left corner of a screen and does following steps: 

 

1. Fixate on any unattended object (further referred to as O1) in the current 

hemifield. 

2. Fixate on any object (referred as O2) in the opposite hemifield that has the same y 

coordinate as the O1. 

3. If O1 and O2 are the same then go to step 1. 

4. If O1 and O2 are different then: 

a. Fixate on an object NO2 nearest to O2. 

b. Fixate on O1. 

c. Fixate on an object NO1 nearest to O1. 

d. If NO1 and NO2 are the same then end the trial. 

e. If NO1 and NO2 are not the same then go to step1. 

 

The steps 4a to 4e are necessary to ensure that the module is comparing a correct pair of 

objects. This uncertainty comes from the fact that when locating a target’s twin in the 

opposite hemifield the model knows only its y coordinate and not the x coordinate. 

Therefore, it is possible for the model to fixate on a wrong object that by chance had the 

same y coordinate. To detect such mistakes model also compares two objects from two 

hemifields that are closest to respective target objects. 

Figure 3.6: An example comparative visual search task where targets are red 

triangle and red oval in left and right hemifields respectively. 
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The model’s mean RT over all trials was 9124 ms (Table 3.2). On average, the model 

needed 9051 ms (SE = 79) and 9197 ms (SE = 80) to finish trials where the difference was 

either in color or in shape respectively. This is a reasonable fit to reaction times reported by 

Pomplun et al. (2001). The current model was unable to show difference between trials 

where the mismatch was either in color or in shape. 

Figure 3.7a shows a histogram of reaction times from original experiment done by 

Pomplun et al. (2001). This histogram can be compared to a histogram of reaction times 

produced by our model depicted in Figure 3.7b. Both graphs show a plateau of short RT 

between 3 and 10 s, indicating that the distribution of RT produced by the model closely 

fits the distribution from the original experiment. On average, the model made 37.4 (SE = 

0.23) fixations during a trial. This is a close match to 39.6 fixations reported by Pomplun et 

al. (2001). The model produces nicely structured scanpath (Figure 3.8) even though there is 

no explicit control of which object should be chosen as O1. 

A model of a SET player 

In our previous study (Nyamsuren & Taatgen, 2013b) we have described how human 

players play the card game of SET and how human behavior in that game can be replicated 

and further explained by an ACT-R model. In that study we have used ACT-R’s default 

Figure 3.8: Example scanpath produced by the model. Open circles indicate 

fixations while arrows indicate saccade directions. Numbers are positions of 

fixations in the fixation sequence. Targets are blue and green triangles at 36th 

and 37th fixations. 
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vision module and compensated for lacking functionalities with custom code specifically 

written for that model. In this study we have changed the original model to work with 

PAAV module. We show how PAAV module helps to describe and explain one of the 

interesting effects found in original study. Refer to Chapter 2 (Nyamsuren & Taatgen, 

2013b) for a more detailed description of the study. 

SET players have a tendency to use a dimension reduction strategy while playing a game 

(Jacob & Hochstein, 2008). That is, they prefer to look for a set among cards that share a 

common feature value thus effectively reducing the search space by one feature dimension. 

For example, subjects might look for a set among the cards that have the color green. The 

choice of a common value heavily depends on an attribute type. For example, an analysis of 

fixations (Nyamsuren & Taatgen, 2013b) indicates that color, as shown in Figure 3.9a, is 

used for dimension reduction twice as much as any other feature. The new model easily 

explains this effect using PAAV’s spreading activation from iconic memory and differential 

acuity. The model also serves well in validating these two functionalities of PAAV module. 

 

 
 

In the new model we used three different values for size feature to mimic number of 

shapes on a card. The actual size of a stimulus representing a card in the visicon also varied 

based on the number of shapes on the card. Sizes were 9.67º, 23.43º and 37.04º for one, two 

and three shapes respectively. The model chooses a feature value for dimension reduction 

by retrieving any of 12 possible values from declarative memory. This retrieval is heavily 

influenced by a spreading activation from iconic memory. For example, if oval shape is a 

dominant feature value in iconic memory then the model is more likely to retrieve oval. 

However, availability of feature values in iconic memory is limited by feature’s differential 

acuity. Therefore, even if the shape value is the dominant value in the visicon, the color 

value can become the dominant value in iconic memory because it has lower visibility 

threshold. Therefore, overall color is used more often by model for dimension reduction 

than other features (Figure 3.9a). The model is not only able to replicate the effect of 

dimension reduction, but also provides a nice overall fit to human players’ mean reaction 

times (Figure 3.9b). 

The Figure 3.10 shows an example collapsed fixation sequence (consecutive fixations on 

the same card were collapsed into one fixation) produced by the model during one of the 

trials. The numbers indicate fixations' positions in the sequence. Although we can exactly 

calculate why the model has chosen to fixate at each location, the the first half of the 

scanpath looks very chaotic. The model has not fixated on some cards at all. Fixations jump 

Figure 3.9: (a) Dimension reduction usage by feature type shown both for 

human players and model; (b) mean reaction times for human players and the 

model. 
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from one end of the scene to other. The absence of visible consistency is very much similar 

to scanpaths produced by subjects. Finally, there are repetitive fixations on the set cards at 

the second half of the scanpath. It is very much similar to repetitive fixations subjects 

produce at he end of the trial when they try to verify if cards indeed form a valid set. So 

scanpath shows models ability to do two distinct types of search: the one guided by bottom-

up visual features and the one guided by a top-down goal. 

As our model shows, the tendency of human players to prefer color can be explained with 

embodied cognition, influence of an external world on our decision making, and the 

limitations of human peripheral vision. 

 

 

Conclusion 

There are many existing models of the human visual system. We have greatly leveraged 

from those models by adopting different concepts and integrating them into one module 

that became PAAV. Our main goal is not to reinvent the wheel, but to create a tool that 

allows modelers to create cognitively plausible models of tasks that require comprehensive 

visual system. This is the major difference between PAAV and existing models of a visual 

system. Models, such as a three-level model of comparative visual search (Pomplun & 

Ritter, 1999) or Guided Search 4.0 (Wolfe, 2007), were created to perform very specific set 

of tasks. On the other hand, PAAV was developed to be general enough to model a wide 

range of tasks. For example, PAAV is highly customizable due to the possibility to adjust 

any parameter mentioned in this paper. This is why we prefer to call PAAV a module rather 

than a model. Furthermore, PAAV is not a stand-alone tool, but rather a part of a cognitive 

architecture. For example, Guided Search 4.0 excels at modeling feature and conjunction 

search tasks. However, an absence of a general cognitive theory makes it hard to investigate 

top-down influence in these tasks. On the other hand, ACT-R imposes limitations on what 

PAAV is allowed to do, but it also gives additional layer of plausibility. The source code 

for the PAAV module and the models of the visual search tasks described in this paper can 

be downloaded via http://www.ai.rug.nl/~n_egii/models/. 

Figure 3.10: An example array of 12 cards where cards with red borders make 

up a set. Also shown is an enumerated fixation sequence produced by the model. 
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Abstract 

This paper studies how visual perception of a scene is affected by cognitive 

processes beyond the scene's bottom-up saliency. The game of SET is taken as 

an example where contrast-based salient parts of a scene are ignored in favor of 

a larger group of similar elements. Using results from a laboratory experiment 

and a model simulation we explain how three cognitive mechanisms, differential 

acuity, visual iconic memory and declarative retrieval, considered together help 

to explain player's visual perception in SET. 
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Introduction 

Many studies describe how perception of a visual scene is governed by visual bottom-up 

mechanisms (Rayner, 1998). The conclusions derived in those studies are often based on 

results from relatively simple tasks involving free scanning or target search. It is widely 

accepted that visual attention is drawn toward a scene's salient parts (Egeth & Yantis, 

1997). This bottom-up saliency is commonly used to explain pop-out effect of items that 

are increasingly different from its surroundings (Theeuwes, 1992). However, these findings 

alone may lead to incorrect conclusions if used within a context of more complex problem-

solving tasks. It is important to consider a relationship between salience and other cognitive 

mechanisms to properly understand the inner workings of human mind in such tasks. We 

use the game of SET as an example of a problem-solving task that gives results that can be 

interpreted initially as contradictory to the visual pop-out effect. Next, we describe how the 

same results can be explained within a framework that combines bottom-up saliency with 

top-down goal-directed attention. For a description of the game of SET refer to Appendix 

A. 

Jacob and Hochstein (2008) studied how bottom-up components of the game, such as 

attribute value distribution among cards, influences player's strategy. They concluded that 

players prefer to search for a set inside the largest group of cards that share at least one 

common value. They referred to a common value as the Most Abundant Value (MAV) and 

the group of cards that contained it as a MAV group. Sets that were inside MAV group 

were found sooner than sets outside of the group with an observed probability being 

significantly higher than a chance probability. 

According to the bottom-up saliency mechanism it is expected that players should start a 

search with visually unique, hence most salient, cards. However, Jacob and Hochstein's 

finding suggests that player's visual attention is drawn toward larger group of cards that are 

visually similar. From a perspective of a bottom-up saliency, this is a highly 

counterintuitive result. Furthermore, another study by Nyamsuren and Taatgen (2013b) 

revealed that a similarity along particular attribute dimension plays more important role in 

players' strategy than the saliency of any individual card. Players are more likely to search 

for a set among larger group of cards with the same color than to attend a card, for example, 

with a unique shape. 

In this paper, we describe a more controlled experiment with set cards with an aim of 

more in-depth exploration of underlying cognitive processes. In order to use the MAV 

strategy, subjects must be able to recognize very quickly, which attribute values are most 

common. The goal of the study is to focus on this particular aspect of SET: to answer the 

question what cognitive processes facilitate such quick recognition in players. Based on 

experimental results and model simulations, we describe how three cognitive mechanisms 

that include visual acuity, visual memory and declarative memory retrieval help to explain 

MAV effect and bias toward similarity in color attribute. 

Experiment 

Design and Procedure 

14 subjects participated in the experiment. All subjects were students of University of 

Groningen. Subjects' age ranged from 18 to 27 (M=22). Subjects started each trial by 

looking at the center of a computer screen. Next, they were shown a 3×4 array of SET cards 
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for a predetermined duration of time. After image of cards disappeared, subject was 

prompted to select one of 12 possible attribute values subject perceived as being the most 

abundant. The experiment consisted of 336 unique trials generated semi-randomly. Trials 

were divided into a short and a long condition block. The array of cards was shown to 

subjects for 600 and 2000 ms in the short and long conditions respectively. For half of the 

subjects, blocks were presented in a reverse order. Within a block, trials were presented in a 

random sequence. In each block, the MAV group size varied from 6 to 12. There were six 

trials in each combination of MAV group size and attribute type. Prior to experiment, 

subjects were asked to do eight, four from each block, trials to let them get familiar with an 

experiment setup. Results from those trials were not included in the analysis. In addition, 

subjects' eye movements were recorded. We used the EyeLink 1000, a desktop-mounted 

remote eye tracker with monocular sampling rate of 500Hz and spatial resolution of < 0.01° 

RMS. Exactly the same experiment setup and stimulus sizes as in Nyamsuren and Taatgen 

(2013b) were used in this study. 

Experiment Results 

Scanpaths 

The difference in trial durations also results in quite clear difference in scanpaths. 

Subjects on average make 8.8 (SE=0.38) fixations in the long condition compared to 2.9 

(SE=0.17) fixations in the short condition. Figure 4.1 provides a more detailed look on the 

trials' fixation counts. There is an 87% probability that subject will make from seven to 11 

fixations in the long condition. In contrast, subjects are likely to make only 2 to 4 fixations 

in 94% of all trials in the short condition. 

 

 
 

Figure 4.2a shows mean durations of fixations in a trial. All durations are measured in 

milliseconds. The last fixations are excluded from the calculation of these means since it is 

likely that those fixations were interrupted when the time limit was reached. The first two 

fixations do not show much difference between the short and long conditions. The 

durations for consecutive fixations in the long condition does not change much. In contrast, 

durations of third and fourth fixations in the short condition gradually become lower. There 

can two explanations to this. It may be an artifact of averaging. Smaller number of trials 

with three or four fixations may be resulting in lower mean. On the other hand, it is possible 

that shorter durations are deliberate. To test this hypothesis we have also calculated the 

average duration of fixations in the short condition trials with exactly four fixations. As we 

have expected, fixations in these trials have much shorter durations than respective 

Figure 4.1: Frequencies of fixation counts subjects made during a trial. 

Frequencies are calculated separately for the (a) long and (b) short conditions. 
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fixations in the long condition trials. Therefore, it is indeed possible that subjects were 

deliberately making shorter fixations in the short condition. 

 

 
 

Figure 4.2b shows how saccade amplitude changes over the course of a trial in both long 

and short conditions. Amplitude is measured in number of pixels that the saccade covers. 

There is not much difference between the two duration conditions. However, there is an 

obvious gradual rise in saccade amplitude as trial progresses. It suggests that there is a 

specific pattern in subjects' scanpaths. 

Accuracy 

As Figure 4.3 shows, the overall accuracy increases as MAV group size increases. This is 

true for both short and long conditions. A test of proportions on pooled data indicate that 

subjects were more accurate in the long condition than in the short condition, χ2(1, 

N=4704) = 35.63, p < 0.001. However, as Figure 4.3 shows, there are remarkably small 

differences in accuracies with respect to group sizes in two duration conditions. 

 

 
 

Figure 4.4 shows a boxplot of accuracy variations based on attribute type and duration. 

We did logistic mixed-effect regression analysis using the duration condition, attribute type 

and the interaction between the two as predictors. The intercept in the regression model 

reflects expected accuracy in a short condition trial where the MAV belongs to shading. 

Relative accuracy increased when MAV belonged to color (z = 3.19, p = 0.001) and 

decreased when MAV belonged to either number (z = -4.142, p < 0.001) or shape (z = -

Figure 4.3: Mean accuracies averaged over all combinations of MAV group 

sizes and duration conditions. 
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2.577, p = 0.01). Overall performance in the long condition increased significantly (z = 

2.093, p < 0.036). However, there were no significant interactions between duration 

conditions and attribute types. 

Chi-square tests confirmed that subjects were significantly better at identifying the MAV 

with a color attribute than any other attribute type. Subjects showed little difference in 

accuracies in the short and long conditions with respect to color (χ2(1, N=1176) = 2.91, p = 

0.088). It is surprising that, despite the significant difference in average number of fixations 

made, subjects are equally good at identifying color value in both duration conditions. In 

contrast, accuracies in the long condition were significantly higher for number (χ2(1, 

N=1176) = 15.283, p < 0.001), shape (χ2(1, N=1176) = 16.94, p < 0.001) and shading 

(χ2(1, N=1176) = 4.12, p = 0.04) than in the short condition. 

 

 

Experiment Discussion 

Effect of MAV Group Size on Accuracy 

This effect can be explained by the priming of declarative memory by the visual system. 

There are several studies indicating that the human visual system has some form of iconic 

memory (Kieras, 2011). It is a low-resolution high-capacity memory where visual 

information is stored pre-attentively for a short duration of time. The process of gathering 

information is massively parallel and almost instantaneous. However, information about a 

visual object is stored as a collection of separate feature channels (such as color or shape) 

rather than single coherent object (Treisman & Gelade, 1980). Therefore, iconic memory 

has just enough resolution to guide further attention shifts and encoding. 

There is evidence that visual perception can influence processes of memory retrieval 

(Wais, Rubens, Boccanfuso, & Gazzaley, 2010). It is reasonable to assume that visual 

stimuli can facilitate memory retrieval of items that are in some form related to the stimuli. 

Furthermore, we assume the same process applies to iconic and declarative memories. 

Items in iconic memory facilitate retrieval of similar or related items in declarative 

memory. In other words, items in declarative memory get activated by items in iconic 

memory. The strength of such activation depends on the number of items in iconic memory 

that are related to the item in declarative memory. 

This interaction between iconic and declarative memories can explain why subjects find it 

easier to identify the MAV among larger group of cards. Subjects need to do two tasks: (1) 

gather visual information through attention shifts and (2) retrieve the MAV from memory 

when prompted. The second retrieval step is influenced by the content of iconic memory 

Figure 4.4: Mean accuracies averaged over all combinations of attribute types 

and duration conditions. 
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that was gathered during the first step. When MAV group size is large, more values enter 

iconic memory, and corresponding MAV value in declarative memory receives a higher 

activation during the retrieval. 

Effect of Attribute Type and Duration on Accuracy 

The exchange of activations from iconic to declarative memories also helps to explain 

why subjects are better at identifying color values than values from any other attribute type.  

There are studies showing that an ability to capture finer details of a visual scene becomes 

worse as the distance from a foveal region increases (Nelson & Loftus, 1998). This 

introduces limitations on what visual features can be gathered into iconic memory. As an 

object is further away from the foveal region it becomes more likely that some of its 

features will not enter iconic memory due to limitations of peripheral vision. A feature's 

acuity threshold defines the maximum distance from a foveal point at which the feature is 

still recognizable (Kieras, 2011). Compared to other features, color has a higher threshold 

making it easier to recognize in the peripherals. Thus, color values have a higher chance of 

entering iconic memory thereby spreading more activation to the same values in declarative 

memory. 

When features, such as shape and shading, have a limited acuity, subjects need to fixate 

closer to respective visual objects to bring them within threshold distance. This explains 

why subjects perform better in the long condition trials. Subjects can make more fixations 

and gather a more complete gist of the visual scene in iconic memory, which then facilitates 

a more accurate declarative retrieval. This probably explains why subjects tried to make 

shorter fixations in the short condition trials. Instead of completely encoding every fixated 

card, the subjects were probably attempting to make short successive fixations and gather 

as much information as possible into iconic memory via peripheral vision rather than foveal 

vision alone. 

Scanpaths 

There are two interesting effects in subjects' scanpaths. Firstly, subjects seem to react to 

time pressure in the short condition by having shorter fixation durations. This behavior also 

supports our assumption that iconic memory and peripheral vision play an important role. It 

is possible that subjects compensate for a shorter duration by making as many fixations as 

possible and accumulating in iconic memory as much visual information as possible. The 

pattern of increasing saccade amplitudes provides a clue about preferences of possible 

fixation locations. Subjects start by fixating on the cards closest to the center of the screen 

and gradually switch to the cards on the peripherals. These fixations from inwards toward 

outwards should result in increasing saccade amplitudes shown in Figure 4.2b. In addition 

to providing more clues about subjects' behavior, scanpaths provide additional 

measurements besides accuracy against which model fit can be evaluated. 

Cognitive Model 

Cognitive Architecture 

We have used ACT-R cognitive architecture (Anderson, 2007) to develop the model. This 

section provides a bare essential description of ACT-R features relevant to this study. 

Appendix B provides a more detailed description of the architecture. We also used Pre-

attentive and Attentive Vision (Nyamsuren & Taatgen, 2013a) module as an extension to 
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ACT-R's default vision module. The PAAV module provides several extra functionalities 

that are otherwise not supported by ACT-R. 

PAAV can pre-attentively capture the gist of a visual scene and store it in iconic memory. 

The content of iconic memory is updated before and after each saccade and before each 

time the memory is accessed. The update process is instantaneous from a perspective of 

model's timeframe. Iconic memory may contain complete information for some visual 

objects, such as an object's color, shape, shading and size. However, for most visual objects 

the iconic memory will contain incomplete information (e.g. color only) due to limited 

acuity. PAAV recognizes that not everything in a visual scene can be resolved by model's 

peripheral vision at any given moment. In PAAV two parameters, a and b, define 

differential acuities of color, shape, size and shading with color having the highest acuity. 

Fitness of these parameters was tested on models of three different visual search tasks and 

the updated model of game of SET (Nyamsuren & Taatgen, 2013a). An object's feature in 

iconic memory, although persisting through saccades, decays after a short period of time 

(currently 4 sec) if not recognizable in peripheral vision anymore. Chapter 3 provides a 

detailed description of PAAV module. 

The content of iconic memory is used to guide the model's visual attention. Visual objects 

with the highest saliency values are prioritized for visual attention and further encoding. In 

PAAV, the bottom-up saliency is a sum of saliency values calculated for each feature 

dimension as a function of contrast to its surrounding. For example, a single red card 

among green, otherwise similar, cards will be the most salient one and draw the model's 

attention. PAAV uses a binary measure of similarity: 1 for exact match and 0 otherwise. No 

adjustable parameters are used in calculation of bottom-up saliency (Nyamsuren & 

Taatgen, 2013a). It is a simplified version of Wolfe's (2007) saliency function. 

In ACT-R knowledge chunks are stored in declarative memory. Each chunk has an 

activation value that usually reflects chunk's recency and frequency of use by a model. A 

chunk with the highest activation has the highest probability of retrieval. Besides frequency 

and recency, a chunk's activation can be increased by the content of iconic memory. Each 

visual object in iconic memory spreads activation to every declarative chunk with the same 

features. So depending on the content of iconic memory at the time the results of two same 

retrievals can differ. The model uses exactly the same set of parameters for declarative 

retrieval as in the original model of game of SET. Details of those parameters are described 

by Nyamsuren and Taatgen (2013b). 

Model of MAV Task 

Model Strategy 

Model performed 50 times the same two blocks of trials subjects did. Model starts each 

trial while fixating at the center of the screen. When cards are shown, models need some 

time to create a working memory before the first saccade is made. At the same time, model 

updates its iconic memory with representations of cards. Then model follows with free 

scanning using bottom-up saliency values to calculate consecutive fixation points. Each 

fixation is followed by encoding of an attended card. Free scanning stops when time limit is 

reached and representations of cards disappear. At this point model retrieves any one of 12 

possible attribute values from declarative memory. Result of this retrieval depends on 

content of iconic memory the model has built up during the free scanning. The retrieved 

value is recorded as model's response for the trial. 
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Model Accuracy 

Model is quite good at replicating subjects' accuracy. Figure 4.5 shows that model's 

accuracy increases linearly as the MAV group size increases. This effect is present in both 

the short and long condition. However, just like subjects, the model shows a better 

performance in the long condition. 

The model is also good at reflecting subjects' accuracy depending on combination of 

attribute types and duration conditions. Firstly, as Figure 4.6, there is a general increase in 

model's accuracy in the long condition. Except in color, the model clearly benefits from 

additional time in all other three attributes. Next, Figure 4.6 shows that model is much 

better at identifying MAV belonging to color attribute than to any other attribute type. 

Similar to human performance, model's accuracy for color in the short condition is higher 

than the accuracies for other three attribute types in the longer trials. 

 

 
 

 

Model Scanpaths 

Comparison of model's scanpaths to that of subjects should give additional measure of 

how well the model fits human data at the level of raw eye movements. Figure 4.7 shows 

distributions of fixation counts the model made in the long and short conditions. In 99% of 

all long condition trials, the model made 9-10 fixations. It is within a range of 7-11 

fixations subjects made. In the short condition, the model made either two or three 

fixations. It is also within a range of 2-4 fixations subjects made. As Figure 4.8a shows, 

Figure 4.6: Mean accuracies averaged over all combinations of attribute types 

and duration conditions. 
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Figure 4.5: Mean accuracies averaged over all combinations of MAV group 

sizes and duration conditions. 
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model's fixation durations do not differ in the long and short conditions. The lower duration 

for the third fixation in the short condition is a result of interruption due to duration limit. 

The model was able to reproduce a pattern of increasing saccade amplitudes in long 

condition trials, as it is shown in Figure 4.8b. It was not completely expected since we have 

not incorporated into the model any deliberate mechanisms to promote this behavior. 

Because the model makes only one or two saccades in a short condition trial, it is hard to 

make any conclusive statements about the pattern of amplitude changes. The same model is 

used in both duration conditions. Hence, there is no reason to expect the model to show 

different scanpath pattern in the short condition. The lower amplitude for the second 

saccade in the short condition is most likely due to smaller number of observations from 

which the mean is calculated. For exactly the same reason, amplitudes for the 9th and 10th 

saccades drop in the long condition since there are fewer trials that have more than 10 

fixations. 

The fact that the model shows the same pattern of increasing saccade amplitudes in the 

long condition suggests that such behavior may be a result of the task environment. Since 

the model starts the task by fixating at the middle of the screen, the model cannot make 

saccades longer than the distance between the middle point and a corner of the screen. 

However, as trial progress the model has a higher chance of making longer saccades (from 

one corner to another). The same environmental conditions are probably responsible for the 

increasing amplitude of saccades produced by subjects (Figure 4.2b). 

 

 
 

 
 

Figure 4.8: (a) Changes in model's mean fixation durations over course of the 

trial in the short and long conditions. (b) Changes in model's saccade amplitude 

over the course of the trial in the short and long condition. 
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Figure 4.7: Frequencies of fixation counts model made during a trial. 

Frequencies are calculated separately for (a) long and (b) short conditions. 
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Discussion on Model Results 

The point at which model has to decide on a choice of MAV is the retrieval from a 

declarative memory. As model shows, the spreading activation from iconic memory is a 

major factor deciding the result of this retrieval.  

However, it is possible to counter-argue that spreading activation from iconic memory is 

not necessary, and items in declarative memory are activated directly through visual 

encoding of similar items. Such mechanism is possible and used in our model. Cards with 

the MAV have a higher chance probability of getting visual attention and being encoded. 

As a result, the MAV in declarative memory receives more activation and is retrieved. 

Although activation through visual encoding would explain subjects' behavior in the long 

condition, it does not explain why there is a similar effect of MAV group size in the short 

condition. Neither subjects nor model can encode more than two cards in the short 

condition, and it is not enough to influence the retrieval. Therefore, bottom-up spreading 

activation from iconic memory is necessary to explain results in the short condition, and 

activation through visual encoding cannot explain alone the experimental results. It is likely 

that subjects rely on visual information in peripheral regions for choosing MAV. 

Furthermore, the fact that subjects are quite good at identifying the MAV even within 600 

ms implies that process of gathering information from peripherals is very efficient. The 

model simulation suggests that it may be massively parallel and instantaneous. 

In the other side, acuity limitations of visual features in peripheral vision can result in 

incomplete and inaccurate iconic memory. This imperfect internal representation may 

explain why subjects fail to reach 100% accuracy. It also explains why subjects get better 

given opportunity to do more fixations in the long condition. More fixations negate the 

effect of low acuity and result in a more complete representation of the scene inside iconic 

memory. Furthermore, giving a higher acuity to color in model simulation increases 

model's accuracy in identifying the most abundant color values in both conditions. This 

result is similar to the result from the experiment, and, therefore, supports the assumption 

that human vision is affected significantly by different acuity properties of visual features. 

The model produces the same pattern of increasing saccade durations in the long 

condition without any deliberate mechanisms. It suggests that spatial arrangement and the 

bottom-up salient parts of the visual scene define the topology of fixation points, more 

specifically the characteristic fixations from inwards to outwards. In the model, cards 

around the edges of the screen are not fully visible due to limited acuity. Those cards have 

reduced bottom-up activation compared to cards around the center of the screen. As a 

result, the model prefers to fixate on cards closer to the screen center at the early stages of 

the trial. We were not able to simulate the deliberate reduction in fixation durations subjects 

have shown in the short condition. Visual processes currently implemented in ACT-R do 

not provide appropriate mechanisms to simulate this effect. 

Discussion and Conclusion 

The model fits subjects' accuracies and scanpaths well supporting the hypothesis that the 

same cognitive processes simulated in the model may also be used by human subjects. 

More specifically, a combined effect of differential acuity, pre-attentive visual iconic 

memory and implicit communication with declarative memory can influence our visual 

perception of the world. 
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The results from this study can explain player's behavior in game of SET. Player has to 

decide on a group of cards to be searched for a set. This choice is made through a 

declarative retrieval of an attribute value that is common among group cards. Similar to the 

experiment's task, this retrieval is influenced by a content of iconic memory introducing a 

bias toward a larger group of cards and cards with same color. The retrieved value is used 

to target attention to specific cards with that value. This top-down control over eye 

movements overrides the bottom-up saliency of the scene. It explains both why players are 

better at finding set within a group with many similar cards (Jacob & Hochstein, 2008) and 

the general preference toward cards with a similar color (Nyamsuren & Taatgen, 2013b). 

The model of SET player implemented on the same principles described here was able to 

simulate player's behavior (Nyamsuren & Taatgen, 2013a, 2013b). It is a good example of a 

case where cognitive mechanisms beyond bottom-up saliency can influence the behavior in 

a reasonably complex problem-solving task. It implies that not every eye movement pattern 

can be attributed to bottom-up salient components of the scene. 

Subjects are far better in identifying the MAV even in the most difficult conditions. In 

600 ms condition with smallest MAV group size, subjects show much higher accuracy than 

8% chance probability of success. This result indicates that capabilities of human visual 

system may be higher than previously expected. The ability to capture a gist of a visual 

scene from first few fixations is known for a long time (Loftus & Mackworth, 1978). 

However, it is commonly viewed that functionality of such gist is limited to attentional 

guidance and providing early structural information for encoding, a preview effect (Rayner, 

1998). On the other hand, our study suggests that gist, in form of iconic memory, may be 

involved in decision-making. It is possible through connections between memories in 

human brain. In this study, we talked about similarity-based cross-memory activations 

between iconic and declarative memories.  However, it may be possible that similar cross 

activations exist between other forms of memory. 

The model code and the data can be downloaded via following link: 

http://www.ai.rug.nl/~n_egii/models/. 
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Abstract 

Using results from a controlled experiment and simulations based on cognitive 

models, we show that visual presentation style can have a significant impact on 

performance in a complex problem-solving task. We compared subject 

performances in two isomorphic, but visually different, tasks based on a card 

game of SET. Although subjects used the same strategy in both tasks, the 

difference in presentation style resulted in radically different reaction times and 

significant deviations in scanpath patterns in the two tasks. Results from our 

study indicate that low-level subconscious visual processes, such as differential 

acuity in peripheral vision and low-level iconic memory, can have indirect, but 

significant effects on decision making during a problem-solving task. We have 

developed two ACT-R models that employ the same basic strategy but deal with 

different presentations styles. Our ACT-R models confirm that changes in low-

level visual processes triggered by changes in presentation style can propagate to 

higher-level cognitive processes. Such a domino effect can significantly affect 

reaction times and eye movements, without affecting the overall strategy of 

problem solving. 

  



Chapter 5 | 67 

Introduction 

More often than not, the study of problem solving is approached from the perspective of 

logical and rational thinking. In an early study, Weitzenfeld (1984) defined the isomorphic 

structure of a task in terms of its elements and the relationship between those elements. 

Weitzenfeld further claimed that the isomorphic structure defines the strategy for 

accomplishing the task. However, Weitzenfeld ignored the significant impact presentation 

style can have on problem solving even when the isomorphic structure is preserved. 

Weitzenfeld took two games as an example of structure preservation: Tic-Tac-Toe and 

Number Scrabble. In Number Scrabble, players select in turn one of the remaining numbers 

from a pile that contains the numbers from 1 to 9. A player who is first to collect a triad of 

numbers adding up to 15 wins the game. Tic-Tac-Toe and Number Scrabble are valid 

isomorphic tasks. Isomorphism is obvious if numbers in Number Scrabble are arranged into 

a magic square where each column and row adds up to 15. Although it is highly likely that 

the two games require the same strategy, they are fundamentally different in terms of 

cognitive processes applied due to differences in visual presentation. While Number 

Scrabble requires top-down addition and subtraction, Tic-Tac-Toe requires more intuitive 

spatial reasoning (Michon, 1967). Furthermore, such a difference in presentation styles may 

affect a player's performance independently of the strategy applied. For example, Michon 

speculates that JAM, another game isomorphic to Tic-Tac-Toe, is easier to learn than Tic-

Tac-Toe due to the fact that it has a different presentation. 

 

 
 

In more recent work, Meijering, Van Maanen, Van Rijn and Verbrugge (2010) showed 

that performance can differ significantly in two isomorphic tasks due to a change in visual 

presentation only. They did a comparative study of subjects' performances in Matrix and 

Marble Drop games. Hedden and Zhang (2002) originally developed the Matrix game to 

study higher-order reasoning. Marble Drop is isomorphic to the Matrix game, albeit having 

a very different presentation style (Figure 5.1). In the Matrix game, each cell contains two 

separate payoffs for players. The game starts in cell A. Players make decisions in turns and 

can choose to either switch to a next cell or stay in a current cell. The game finishes when a 

player chooses to stay, or when cell D is reached. A player's goal is to finish the game in a 

cell with a maximum possible payoff. The Marble Drop game replaces numeric payoffs 

with color-graded marbles and cells with bins of decreasing height. Through manipulation 

Figure 5.1: The Matrix game (a) used in Hedden and Zhang (2002) and its 

Marble Drop equivalent (b) described in Meijering, Van Maanen, Van Rijn and 

Verbrugge (2010). 

Cell B
Player I payoff: 4

Player II payoff: 2

Cell A
Player I payoff: 3

Player II payoff: 1

Cell D
Player I payoff: 2

Player II payoff: 3

Cell C
Player I payoff: 1

Player II payoff: 4

Player II decides

Player I decides Player I decides

Player I decides

Player II decides

Player I decides

(a) (b)



68 |  The effect of visual representation style in problem-solving 

 

 

of the trapdoors, a player has the choice to drop a marble to either the current bin or to the 

next set of trap doors controlled by the other player. Although the same chain of reasoning 

is required in both tasks, subjects showed superior reaction times and accuracy in the 

Marble Drop game. 

This isomorphic structure may be appropriate in explaining players' strategies at a high 

level, but it is certainly not enough to explain the performance difference shown by 

Meijering et al. (2010). So how does presentation style change the way humans approach a 

problem-solving task? After all, it is possible that a change in presentation style imposes a 

completely different strategy. However, in light of previous studies, it is an unlikely 

explanation. Alternatively, it can be the case that the overall strategy is the same, but 

specific actions within that strategy are performed in different ways depending on 

presentation styles. It is possible that the effects from those relatively small changes can 

accumulate and result in a significant difference in performance.  

There is evidence that individual steps within a strategy in the same task can be done 

differently, depending on a player's experience. For example, part of a common strategy in 

Tetris is to rotate and move a token to check where it fits best. This manipulation of tokens 

is done either physically or mentally, depending on a player's experience (Destefano, 

Lindstedt & Gray, 2011; Kirsh & Maglio, 1994). A similar effect is also observed in 

players playing Scrabble. Some players prefer to rearrange letters physically to check what 

valid words the letters can form (Halpern & Wai, 2007). Other players prefer to do the 

same step mentally. Experienced players who do mental manipulations generally perform 

better in both games. These examples show that the same actions in the same strategy can 

result in differences in performance if done in different ways. 

In Tetris and Scrabble, we see a straightforward substitution of a physical process with a 

mental one. However, a change in presentation style while preserving the isomorphic 

structure may result in a more subtle substitution of one mental process by another mental 

process. For example, in the Matrix game, a player may be mostly reliant on top-down 

processes (arithmetic operations), while in Marble Drop game, a player may also leverage 

from faster visual bottom-up processes (color perception). 

All of the above examples show that problem solving is dependent both on the 

isomorphic structure of a task and its presentation style. Furthermore, a study of human 

behavior in a problem solving task should be done with respect to both the overall strategy 

dictated by its isomorphic structure and the individual cognitive processes imposed by its 

presentation style. However, the extent of the dependency of problem solving on 

presentation style is still to be investigated. 

Research Objective 

The main question in this particular study is how the high-level strategy adapts to the 

perceptual characteristics of a task. The simplest adaptation would be to keep the top-down 

strategy the same. However, in such a case, some of the processes done originally by low-

level perceptual processes should be transferred to top-down cognitive processes (or vice 

versa). 

We are capitalizing on previous work (Nyamsuren & Taatgen, 2013b) done on the game 

of SET that provides a more or less complete description of the strategy players use. In 

SET, the rules and the isomorphic structure of the game largely determine the players' top-

down strategy. However, the perceptual elements of the game can have a significant impact 

on how the strategy is implemented. This makes SET uniquely suited for our study of the 
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effects of changes in presentation style at levels of both the overall strategy and the 

cognitive processes. The reader can refer to Appendix A for more information on SET. 

The earliest study with SET (Taatgen, Oploo, Braaksma & Niemantsverdriet, 2003) found 

that the time required to find a set increases as the set level increases. A more controlled 

study in which subjects were presented with 12 cards with only one set in it also showed the 

same pattern (Nyamsuren & Taatgen, 2013b). The reaction times already show a tendency 

toward a strategy that finds a set with similar cards faster than a set with dissimilar cards. 

Further studies revealed that a player's strategy can be divided into two phases of search: 

dimension-reduction and dissimilarity-based search. Jacob and Hochstein (2008) showed 

that players often reduce the search space by looking at groups of cards that share at least 

one attribute value. They referred to it as a dimension-reduction, since players reduce the 

number of attributes that they need to compare. The choice of a group of cards is highly 

dependent on group size: larger groups have a higher probability to be chosen. Surprisingly, 

subjects need as little as 600ms to extract such complex visual information as identifying 

the largest group of cards sharing a common attribute value among 12 SET cards 

(Nyamsuren & Taatgen, 2013c). This search is very much dependent on the visual 

similarity of the cards. Nyamsuren and Taatgen (2013b) further found that the choice of an 

attribute value for dimension reduction is not random, because players often prefer color 

over any other attribute. Furthermore, dimension reduction is mostly used at the beginning 

of the search, and, if a set cannot be found, players gradually transition to looking for 

increasingly dissimilar cards. 

When players fail to find a set using dimension-reduction, they switch to dissimilarity-

based search (Nyamsuren & Taatgen, 2013b). Dissimilarity-based search is used for finding 

higher-level sets with dissimilar cards.  Players still focus on a particular attribute to guide 

the search. However, instead of looking at cards with the same attribute value, their 

attention is drawn to cards that have different values for the chosen attribute. Dissimilarity-

based search does not allow the use of lower-level similarity-based perceptual processes. 

One can argue that discriminating between two colors can be done purely with bottom-up 

visual processes. However, identification of three colors that are all different from each 

other likely requires some form of top-down control. These factors make dissimilarity-

based search a cognitively more demanding process.  

The strategy already provides clues about the type of cognitive processes involved. At the 

beginning of the game, subjects use perceptual processes to identify similar regions of the 

scene. Those processes are fast, efficient and more suitable for finding lower-level sets with 

similar cards. At the latter stages of the game, subjects use a slower, but more deliberate 

and controlled search to find higher-level sets. The preference for dimension reduction 

explains why subjects need less time to find lower-level sets than higher-level sets. 

 The question remains whether the preference toward similarity is a result of a deliberate 

strategy choice or an effect imposed by presentation style. The iconic nature of the 

presentation style in SET makes it easy to identify similar cards using low-level perceptual 

processes. This advantage may prompt players to choose dimension-reduction over the 

more demanding dissimilarity-based search. It certainly can explain why players prefer to 

start the game with dimension-reduction and require less time to find lower-level sets. As 

such, presentation style may be directly influencing strategy choice. On the other hand, it is 

still possible that strategy choice is not dependent on presentation style and may be inherent 

to the structure of the task. The simplest way to test this hypothesis is to change the 

presentation style in such a way that the identification of similar and dissimilar groups of 
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cards requires an equal effort. Of course, the task structure should be preserved. If strategy 

choice in SET is indeed defined by presentation style, then the preference for dimension-

reduction should disappear. In other words, players should be equally likely to use 

dimension-reduction and dissimilarity-based searches at the beginning of the game. It is 

also possible that a new presentation style may even result in a new strategy. However, if 

strategy is defined by task structure, then we should observe little change in strategy, even 

if the presentation style of a task has been changed. 

In this study, we used a modified version of SET, in which each card has a set of four 

words describing its four attribute values. The objectives and rules of the game are the same 

as in the original version. Word set is isomorphic to the original version of the game. 

However, the textual representation of cards removes most of the advantages inherent to 

perceptual components of the game. For example, textual representation should effectively 

deny subjects the ability to quickly identify a group of similar cards reported by Nyamsuren 

and Taatgen (2013c). On the one hand, it is interesting to analyze how problem-solving 

strategies change based on changes in presentation style. On the other hand, it might be the 

case that the strategy is still the same, and subjects prioritize similarity, despite the absence 

of a perceptual leverage. In this second case, the question is how cognitive processes are 

changed and adapted to apply the strategy to different visual presentations. 

In our previous studies (Nyamsuren & Taatgen, 2013a, 2013b), we have described a 

cognitive model of a SET player. The model simulates a player's behavior at the level of 

individual cognitive processes involved during the game. Those processes include both 

high-level planning and visual bottom-up perception. The model uses the same strategies 

described earlier, and maintains an overall top-down cognitive control over the 

implementation of the strategy. However, individual steps within the strategy are highly 

dependent on low-level visual processes. For example, bottom-up activation from visual 

memory plays a key role in the model's choice of using either dimension-reduction or 

dissimilarity-based search. Using a new experiment, we can verify whether the model is 

still valid if most of the bottom-up aspects of perception are taken away. Additionally to 

providing a certain validation for the theories proposed in the paper, the model can also 

serve as a useful exploration tool. If players apply different strategies in word set, the model 

can help to investigate the cognitive processes underlying the new strategies including the 

primary triggers of strategy shift. 

Experiment 

Ethics 

The Ethical Committee Psychology (ECP) of the University of Groningen approved this 

study. Written informed consent as approved by the ECP was obtained from each 

participant before conducting the experiment. 

Subjects 

In total, 20 subjects participated in the experiment. All subjects were students of the 

University of Groningen. The subjects' previous experience with SET ranged from a few 

played games to several years of experience. The results from two subjects were excluded 

from analysis due to extreme noise in the eye movement data caused by a decreased eye 

tracking accuracy of the camera. 
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Design and procedure 

The experiment was divided into two blocks with different trial types: a block with 

picture SET trials, and a block with word SET trials. Each block had 32 trials presented to 

subjects in random sequence. Each trial consisted of 12 cards shown on a computer screen 

and arranged in an array similar to the one in Figure 5.2. A trial had exactly one 

combination of three cards that formed a set. As a hint to the subjects, one of the set cards 

was highlighted by a red border. All trials were generated semi-randomly ensuring a same 

number of trials per difficulty level in each block. The order of the four attributes in each 

word SET trial was chosen semi-randomly from the following four possible combinations: 

(Shading, Shape, Number, Color); (Number, Shading, Color, Shape); (Color, Number, 

Shape, Shading); (Shape, Color, Shading, Number). It was ensured that all four of the 

combinations received an equal number of trials. Ten subjects started the experiment with a 

block of word trials, and eight subjects started the experiment with a block of picture trials. 

The trials were essentially the same in the two blocks, except that attribute values were 

rotated between two blocks. Subjects were not told of this similarity. For example, while 

converting a picture trial into a word trial, all greens were replaced with blues, blues with 

reds and reds with greens. In a similar way, the values for other three attributes were rotated 

as well. This ensured that the trials in the two blocks were the same, but not recognizable 

by the subjects as such. 

 

 
 

Prior to the experiment, subjects were asked to do six warm-up trials, three from each 

block, to let them become familiar with the experimental setup and with picture/word SET. 

The results from those trials were not included in the analysis. Half of the subjects started 

the experiment with a block of picture set trials, while the other half started the experiment 

with a block of word set trials.  

Figure 5.2: An example of a picture trial (a) used in the experiment and its 

equivalent word version (b). Cards highlighted with a border are the cards that 

form set (not visible for subjects). The card with a dashed border is a highlighted 

card. 
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An EyeLink 1000 eye tracker was used for recording the eye movements. It is a desktop-

mounted remote eye tracker with a monocular sampling rate of 500Hz and a spatial 

resolution of  < 0.01° RMS. The card images were shown on a 20-inch LCD monitor with a 

screen size of 1024×768 pixels and a screen resolution of 64 pixels/inch. The card images 

had a size of 124×184 pixels, or 4.02°×5.95°. The horizontal and vertical distances between 

the images were 80 and 70 pixels respectively, which constitutes to 2.59° and 2.27°. 

Angular sizes were calculated with an approximate viewing distance of 70 centimeters 

since the subjects were given a certain freedom for head movement. The gaze position, as 

calculated using the eye's corneal reflection captured with an infrared camera, compensated 

for head movements. The eye tracker's default parameters were used to convert gaze 

positions into fixations and saccades. The calibration of the eye tracker was performed at 

the start and during the experiment, if necessary. A calibration accuracy of 0.8° was 

considered acceptable. Before each trial, subjects were asked to do a drift correction as an 

additional corrective measure. 

Experiment results 

This section provides an analysis based on the subjects' reaction times and eye 

movements. Most of the eye movement analyses are based on collapsed fixation sequences 

in which consecutive fixations of the same card are collapsed into one fixation. It is 

explicitly mentioned when raw fixation sequences have been used in the analysis. 

Reaction times 

The reaction times provide the first clue about possible strategies used in the two types of 

the game. According to a mixed effects two-way ANOVA done on log-transformed 

reaction times, the order of two blocks had no significant effect on the subjects' overall 

reaction times (F(1, 16)=1, p=0.331), nor did it have a significant effect on reaction times 

in either picture or word trials (F<1). Reaction times in word trials were significantly 

higher than reaction times in picture trials (F(1, 16)= 158.913, p<0.0001), independently of 

the order of blocks. 

 

 
 

In Figure 5.3, median reaction times for picture trials show the characteristic increase of 

RT as a result of an increased SET level. We used a mixed-effect linear regression analysis 

Figure 5.3: (a) Reaction times averaged by trial difficulty and type. (b) Mean 

reaction times calculated for each subject. 
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on log-transformed reaction times with set level as a predictor and subjects as a random 

effect. The analysis showed that reaction time increased on average by 4.54 seconds as the 

set level increased (β = 0.2939, t = 9.774, p < 0.001).  This effect is similar to the results 

from previous studies (Nyamsuren & Taatgen, 2013b). 

Reaction times for word trials also exhibit the same effect. However, subjects needed 

more than twice the amount of time to find sets in word trials than in picture trials. An 

identical mixed-effect linear regression analysis indicated that reaction time increased on 

average by 17.2 seconds as the set level increased (β = 0.2591, t = 10.44, p < 0.001). There 

was a positive correlation between the subjects' mean reaction times in picture and word 

trials: r(16) = 0.66, p < 0.01. This indicates that subjects who perform well on finding 

picture sets can be expected to be good at finding word sets as well. 

Overall, subjects are better at finding sets with similar cards in both types of the game. It 

is therefore likely that subjects are using dimension-reduction not only in finding picture 

sets, but also in finding word sets. 

Fixations 

It is quite obvious from RT plots above that the number of fixations varies from trial to 

trial depending on the trial condition and trial level. Figure 5.4 shows how trial length 

varies in two conditions. The lengths were calculated based on collapsed fixation 

sequences. A collapsed fixation sequence is a sequence where consecutive fixations on the 

same card were collapsed into one fixation. Figure 5.4a shows that around 76% of all trials 

in picture set have 100 or less collapsed fixations. According to Figure 5.4b word trials 

have significantly more fixations than picture trials. 

 

 
 

There is also a variation in the number of collapsed fixations depending on the level 

condition. In picture set, average lengths of collapsed fixation sequences in levels 1 to 4 are 

48 (SE = 10), 86 (SE=13), 95 (SE=11) and 82 (SE=8) fixations respectively. In word set, 

those numbers are 112 (SE=12), 145 (SE=10), 187 (SE=11) and 204 (SE=14) fixations. 

Card encoding 

The difference in encoding processes can have a significant effect on how information is 

stored in working/long-term memory, and on how it is further processed. For example, if a 

card was encoded as a series of visual objects rather than a single object, then it is likely 

that it will be processed and stored in memory as a series of visual objects. 

Figure 5.4: Proportions of trials by lengths of collapsed fixations sequences in 

(a) picture set and (b) word set. 
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There is a difference between picture and word trials in terms of the number of fixations 

required to encode a card. It is hard to quantify exactly how much information about a card 

is encoded at each instance. However, it is safe to assume that during a fixation in a picture 

trial, a subject encodes at least as much information as during a fixation in a word trial. 

Figure 5.5 shows how many consecutive fixations subjects need to encode a card. The 

proportions were calculated from raw fixation sequences. In picture trials, subjects need 

one fixation 84% of the time. However, in word trials, occurrences of one fixation per card 

amount to 43%. Often subjects need two or more fixations to encode a card. This suggests 

that there is quite a significant difference between picture and word trials in terms of the 

effort required to encode a card. In word trials, subjects ideally need four fixations, one 

fixation per attribute, to encode an entire card. Furthermore, in around 4% of the time, 

subjects had more than four consecutive fixations on the same card. The results suggest 

that, in word set, a card is encoded as a series of visual objects, as opposed to the single 

coherent object encoded in picture set. 

 

 
 

With respect to picture set, we should be careful in claiming that the process of encoding 

a card is holistic, even if it results in a coherent visual chunk. Holistic processing is defined 

as recognition of an entire visual object without any explicit recognition of its constituent 

parts (Richler, Gauthier, Wegner & Palmeri, 2008). In case of picture set, holistic 

processing would imply that a card is recognized without explicit recognition of its four 

attribute values. However, holistic recognition is unlikely because card encoding in picture 

SET does not violate any of three principles defined by the General Recognition Theory 

(Wenger & Ingvalson, 2002; 2003). General Recognition Theory states that holistic 

processing occurs if principles of perceptual independence, perceptual separability or 

decisional separability are violated in any combination. In picture set, color and shading 

violate the perceptual independence principle since the two are highly correlated. 

Therefore, it is probable that the two attribute dimensions are processed holistically. 

However, other combinations of attribute dimensions violate none of the principles 

mentioned above. Correspondingly, it is more likely that card encoding is a hierarchical 

process in which individual attributes are encoded first and then combined into a coherent 

object.  

Processing of word set cards is definitely not holistic. Holistic perception requires a visual 

object to have a sufficient acuity relative to its distance to the focal point. Text has one of 

the lowest acuities among common feature dimensions. Kieras (2010) defined a visual 

Figure 5.5: Proportions of the counts of consecutive fixations on the same card. 

Proportions have been calculated separately for picture and word trials. 
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angle of one degree as the distance to the focal point within which individual letters are 

recognizable. Therefore, even if all three GRT principles were violated, holistic recognition 

of word set cards would be impossible due to the physical limitation of acuity. 

The remaining eye movement analyses in this article were based on collapsed fixation 

sequences, in which consecutive fixations of the same card have been collapsed into one 

fixation. 

Dimension-reduction and dissimilarity-based search 

We have calculated the usage of dimension-reduction from eye movement data using the 

same methods described in our earlier study (Nyamsuren & Taatgen, 2013b). This method 

finds blocks of consecutive collapsed fixations on cards that have at least one common 

attribute value. Next, all blocks that have a chance probability above 0.05 were filtered out. 

Since each card has four attributes, there can be overlapping blocks within the same 

subsequence of collapsed fixations. Overlapping has been removed by cutting the right-

most blocks at the point of overlap. The chance probability has been recalculated for the 

leftover blocks. Finally, the lengths of the resulting significant blocks were used to 

calculate the proportions shown in Figure 5.6a. Please, refer to Appendix C for more details 

on the calculation method. 

 

 
 

Figure 5.6a shows how often each attribute is used in dimension-reduction during the 

course of a single trial. Fixation sequences for the trials in which dimension-reduction is 

impossible with respect to a particular attribute value were removed from analysis. For 

example, if the highlighted card is green and there are only two other green cards, then the 

trial is not used for calculating a proportion of dimension-reduction by color. The 

Figure 5.6: (a) The usage of attribute types in similarity-based scanning as a 

proportion of the trial's collapsed fixations sequence. (b) The probability of 

using dimension-reduction based on the collapsed fixation's position within 

trial's collapsed fixation sequence. The probability at collapsed fixation position 

x is calculated as: N(dr(x))/N(x). N(dr(x)) is a number of trials that have 

dimension-reduction blocks at position x; and N(x) is a total number of trials that 

have at least x number of collapsed fixations. Collapsed fixation sequences in 

word trials are significantly longer than in picture trials. For comparison 

purposes, sequences and dimension-reduction blocks from word trials were 

transformed into shorter lengths to match the lengths of corresponding picture 

trials. 
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proportions were calculated separately for picture and word trials. For example, the first bar 

in Figure 5.6a shows that 22% of the collapsed fixation sequence of a picture trial will be 

occupied by collapsed fixations in which the subject did dimension-reduction by color. As 

with the previous study (Nyamsuren & Taatgen, 2013b), in picture trials, subjects show a 

clear preference to color over any other attribute. However, in word trials, there is hardly 

any preference to any of the attributes with nearly equal proportions on each attribute type. 

Figure 5.6b shows how likely it is that dimension-reduction will be used during the first 

100 collapsed fixations of the trial. 76% of all picture set trials had less than 100 collapsed 

fixations. Therefore, we have chosen to use only first 100 collapsed fixations to avoid 

increasing noise in the data. Again, the proportions are shown separately for picture and 

word trials. The probability that subjects will use dimension-reduction during first the 30 

collapsed fixations of a picture trial is, on average, around 40%. The probability then goes 

down with each consecutive fixation. The mixed-effect linear regression analysis done on 

proportion lines calculated for individual subjects shows that this decrease is significant 

(Table 5.1). This analysis used all collapsed fixations in positions between 20 and 80. Trials 

with less than 20 collapsed fixations are not included in the regression analysis since it is 

reasonable to assume that a set was already found and subjects never switched to a different 

strategy. Therefore, there is no reason to expect decrease in dimension-reduction in those 

trials. The number of collapsed fixations is limited to 80 collapsed fixations for two 

reasons: most trials have less than 100 collapsed fixations; fixations at trial's end usually 

related to verification (repetitive back and forth fixations to verify validity of a set) rather 

than visual search. This decreasing pattern is, again, very similar to one found in the earlier 

study (Nyamsuren & Taatgen, 2013b). 

Dimension-reduction also occurs frequently in word trials. In addition, the main and 

interaction effects of the fixation positions shown in Table 5.1 indicate that there is an 

overall slow, but significant decrease in the proportion of fixations devoted to dimension 

reduction as a trial progresses. This indicates that subjects are also using dimension 

reduction in word trials. However, according to Figure 5.6a there is no clear preference 

toward a particular attribute value. The visible difference between the two probability lines 

in Figure 5.6b can be explained by different scanpath structures imposed by differences in 

visual presentation. This issue is explored further using model simulations. The reader can 

also refer to Appendix D for additional analysis based on Autoregressive Integrated 

Moving Average models applied to data on Figure 5.6b. These models treated collapsed 

fixations as time series and predicted usage of dimension reduction on future unseen 

fixations. The predictions also showed a decreasing trend in usage of dimension-reduction. 

 

Table 5.1: The result of a linear mixed-effect regression analysis of a predicted proportion 

of dimension reduction based on a collapsed fixation position and a trial type. 

 

 Estimate Std. Error t value p value 

Intercept (Picture trial) 0.3866 0.0169 22.88 < 0.001 

Fixation position -0.0028 0.0002 -13.84 < 0.001 

Word trial 0.0376 0.0152 2.48 0.013 

Fixation position and word 

trial interaction 
0.0011 0.0003 3.86 < 0.001 
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Dimension reduction is a similarity-based strategy. A player searches for a set among 

cards that are similar with respect to, at least, one attribute dimension. However, subjects 

gradually stop using dimension-reduction and start looking for higher-level sets. This 

means that subjects start searching for a set among cards that are increasingly dissimilar. 

This pattern can be revealed by dividing a trial's collapsed fixation sequence into 

consecutive series of subsequences, and by calculating the overall similarity of each 

subsequence to the highlighted card. 

An earlier study with SET (Nyamsuren & Taatgen, 2013b) has shown that subjects 

refixate on a highlighted card approximately every five collapsed fixations, presumably to 

refresh their memory and to restart a new search subsequence. The following labeled 

collapsed fixation sequence (given for purpose of example only) “4-7-11-10-3-7-2-11-4-3-

10-2-5-9-5-6-4-7-5-8-4”, with 4 being a fixation on a highlighted card, can be broken down 

into three subsequences. Next, each subsequence's overall similarity to the highlighted card 

can be calculated. 

 

 
 

Table 5.2: The result of a linear mixed-effect regression analysis of a predicted similarity 

to a highlighted card based on a subsequence's position and a trial type. 

 

 Estimate Std. Error t value p value 

Intercept 

(Picture trial) 
1.474 0.015 100.3 < 0.001 

Subsequence position -0.020 0.001 -18.9 < 0.001 

Word trial -0.009 0.014 -0.65 0.518 

Subsequence position and 

word trial interaction 
0.013 0.001 9.13 < 0.001 

 

The same subsequence-based analysis was done in this study. As shown in Figure 5.7, the 

mean similarity of fixated cards to the highlighted card decreases over time in picture trials. 

A linear mixed-effect regression analysis was done on the first 20 subsequences. On 

average, a subsequence contains 4 collapsed fixations. Therefore, the analysis covers, 

Figure 5.7: The mean overall similarity of all cards in a particular subsequence 

to the highlighted card. The values are calculated separately for picture and word 

trials. 
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approximately, 80 collapsed fixations of a trial which close in scale to analysis done on 

dimension-reduction. The analysis indicates that the decrease is significant (the main effect 

of subsequence's position on Table 5.2). The decrease is very similar to the one found in 

previous study (Nyamsuren & Taatgen, 2013b). The same effect is also present in word 

trials. However, the decrease in similarity, although significant, is very slow (the interaction 

effect on Table 5.2). This slight decline is nowhere near as big as in picture trials. 

In picture set, subjects are clearly transitioning into a dissimilarity-based search as their 

trials progress. However, the same effect is not conclusive in word set. Nevertheless, 

considering that subjects were able to find level 4 sets, it is reasonable to assume that 

dissimilarity-based search was applied in word set trials, despite the lack of evidence in eye 

movement data. 

Systematic versus unsystematic scanpaths 

Both dimension-reduction and dissimilarity-based strategies require visual searches. The 

spatial characteristics of the scanpaths can give insights into differences in visual searches 

between the two types of tasks.  

Figure 5.8a shows a density plot based on the saccades' raw angles. The plot reveals four 

very distinct distributions centered around 0/360, 90, 270 and 360 degrees. It indicates that 

in both picture and word trials, subjects prefer to make horizontal and vertical saccades. 

Such a preference can be partially explained by the grid-like presentation structure of the 

scene. However, higher peaks in distributions of word trials indicate that preference for 

vertical and horizontal saccades might be higher in word trials. This difference cannot be 

accounted for by presentation structure, since this structure is identical in both types of trial. 

 

 
 

Ponsoda, Scott and Findlay (1995) proposed to measure the systematicity of visual search 

based on the proportion of diagonal saccades. The higher the proportion of diagonal 

saccades is, the less systematic the search. Figure 5.8b shows a radar chart with the 

proportions of saccades in each of the eight direction categories defined by Ponsoda et al. 

Firstly, the logistic mixed-effect regression analysis indicates that there is a significant 

difference in proportions of diagonal saccades made in word and picture trials. The 

probability of a diagonal saccade in a picture trial is 0.34 (the intercept on Table 5.3). The 

same probability in a word trial decreases to 0.25 (the negative main effect of word trial on 

Table 5.3). The low probability of diagonal saccades indicates that visual search is, in 

Figure 5.8: A radar chart for the proportions of saccades in each saccade 

category. 
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general, systematic in both types of trial. The decrease in diagonal saccades in word trials 

indicates that subjects are less systematic in picture trials than in word trials. This 

difference in systematicity may account for the differences in distribution shown in Figure 

5.8a. 

Next, there is a small, but significant effect of trial level on the probability of a diagonal 

saccade. Subjects are more likely to make diagonal saccades in more difficult picture trials 

(the positive main effect of Trial level on Table 5.3). However, this effect is greatly reduced 

in the word trials (the significant negative interaction effect on Table 5.3). 

 

Table 5.3: The results of a logistic mixed-effect regression in which the predicted value is 

the probability of a diagonal saccade. 

 

 Estimate Std. Error z value p value 

Intercept 

(Picture trial) 
-0.676 0.036 -18.79 < 0.001 

Word trial -0.420 0.035 -12.03 < 0.001 

Trial level 0.046 0.010 4.69 < 0.001 

Word trial and trial 

level interaction 
-0.035 0.012 -2.96 0.003 

 

The results suggest that in word set, subjects do more structured scannings with more 

prevalent horizontal and vertical saccades than in picture trials. The increased systematicity 

of the scanpaths in word set may be related to the lack of visual clues in peripheral regions 

to guide visual attention. As a result, subjects may be forced to do exhaustive searches in 

word set, as opposed to more guided searches in picture set. Such exhaustive searches can 

also explain the lack of evidence for dimension reduction and dissimilarity-based search in 

the analysis of eye movements from word set trials. 

Experiment discussion 

Strategy in picture trials 

Evidence from the experiment indicates that there is a gradual shift from dimension 

reduction to dissimilarity-based search in both versions of the game. As discussed in the 

previous study (Nyamsuren & Taatgen, 2013b), individual steps within a strategy are the 

same for both dimension-reduction and dissimilarity-based search. Searching for a set is a 

repeated comparison of three cards. Therefore, a player's strategy ultimately boils down to 

finding an optimal way to decide which three cards to compare. The subject is already 

provided with a highlighted card, so he picks a second card and then searches for a third 

card that may form a set with two already selected cards. If he cannot find a suitable third 

card, then he picks another card as a second card and starts a new search for a third card. 

The choice of a second card depends on preferences toward attribute types, and on whether 

dimension-reduction or dissimilarity-based search is being used. For example, at the 

beginning of a trial, a subject is more likely to choose a second card that is similar to a 

highlighted card, since dimension-reduction is preferred at this point. Furthermore, it is 

more likely that the second card shares the same color with a highlighted card than, for 
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example, the same shading. However, over time, the choice of a second card is geared 

toward less similarity to a highlighted card. The entire strategy is simple, but effective 

enough, and, simulated in a cognitive model (Nyamsuren & Taatgen, 2013a, 2013b) gives 

the same pattern of behavior as exhibited by human subjects. 

Strategy in word trials 

Based on an initial impression, it appears that subjects are using different strategies in 

picture and word trials. However, we propose that the strategies are the same. This 

assumption is supported by a significant positive correlation between the subjects' reaction 

times in word and picture trials. Furthermore, the fact that subjects need more time to find 

higher level sets than lower level sets in word trials as well suggests the same bias toward 

similarity as was found in picture trials. It also supports the assumption that the strategies 

are the same. Increased reaction times in word trials and other changes in behavioral data 

can be accounted for by a poor quality of visual information that leads to different cognitive 

processes being used for strategy implementation. The lack of a visual acuity of an attribute 

value presented as a text has several implications in terms of different cognitive processes 

involved in the two types of trials. 

Scene gist 

The lack of visual acuity in word trials hugely affects subjects' ability to leverage from 

peripheral vision. In picture trials, attribute values are mostly identifiable in peripheral 

vision, and a subject can catch the gist (Pollatsek, Rayner & Collins, 1984; Potter & Levy, 

1969) of a scene almost instantaneously. Such a gist is used for guiding attention and for 

encoding specific objects in the scene. If one is looking for a green card, then it is almost 

immediately obvious where all of the green cards are. In word trials, text is not identifiable 

in peripheral vision. So the gist that is readily available in a picture trial is absent in word 

trial. One could argue that in word trials subjects can gradually build up the gist of the 

scene in visual short-term memory after several initial fixations. However, such a gist will 

be extremely complex and unpractical, since every card is encoded as a collection of four 

objects. In addition, visual memory has relatively short temporal persistence, usually within 

a few seconds (Kieras, 2010, 2011). 

Card encoding 

There is a difference between picture and word trials in terms of how information about 

the card is stored in memory once it is encoded. Previously, it was mentioned that in a word 

trial, a subject needs more than one fixation to encode a card (Figure 5.5). In picture set, a 

subject fixates on a card and encodes it into a single coherent visual object. This 

assumption is supported by the fact that, in 83% of instances, subjects need only fixation to 

encode the card. This object contains information about all four of the attributes of the card. 

As was mentioned earlier, individual letters can be recognized within a distance of 1º from 

the focal point (Kieras, 2010). In word set, the vertical distance between two neighboring 

words is 1.36º (42 pixels). Therefore, we assume that, in a word trial, a subject ideally 

needs four fixations, one fixation per attribute, to encode an entire card. Moreover, the card 

is encoded not as a single coherent object, but as a collection of four different visual 

objects, and is subsequently stored in a memory as such. This introduces an additional 

overhead of associating four objects with a single card. 

 



Chapter 5 | 81 

 

Dimension-reduction 

The fact that reaction times for lower level sets are shorter than reaction times for higher-

level sets (Figure 5.3a), indicates that dimension-reduction is still being used in word trials. 

The slow, but steady decrease in Figure 5.7 also indicates to a certain preference for 

similarity-based search. However, the absence of a gist has a significant influence on how a 

subject does dimension-reduction. There are several studies indicating that different 

features are not equally identifiable in peripheral vision (Kieras, 2010, 2011; Wolfe & 

Horowitz, 2004). For example, it is easier to identify color than any other feature. Hence, 

color is present more prominently in a gist, and subjects are more likely to choose color for 

dimension-reduction (Nyamsuren & Taatgen, 2013b). However, absence of a gist in a word 

trial removes preference for any particular attribute. This is the primary reason why Figure 

5.6 shows very little difference between attributes in word trials. 

Scanpaths 

As we have discussed earlier, in a picture trial, a subject tends to pair a highlighted card 

with a second card and then searches for a third card that can potentially form a set with the 

pair. The same strategy is applied in word set. Figure 5.9 shows a very nice example. It is a 

scanpath produced by one of the subjects during the trial shown in Figure 5.2a. As the 

scanpath indicates, the subject probably formed at least two pairs during the course of the 

trial. Repetitive back and forth fixations (between 50 and 70 fixations) between the 

highlighted card C7 and the second card C2 indicate that a pair was formed out of these two 

cards. Next, the subject scans for a matching third card up until 90th fixation. Since the 

subject was not able to find a matching card, the new pair was formed with card C3 

(between 90 and 103 fixations). A new search for a matching card was done up until 122th 

fixation, where the subject identified card C12 as a possible match. Indeed, cards C7, C3 

and C12 form a valid set, so trial finishes. 

Although these are the same basic steps as in a picture trial, there is one significant 

difference between scanpaths. The search for a third card in picture set is supported by a 

scene gist. If a subject is looking for a green card, then it is immediately identifiable where 

all of the green cards are. However, in word set there is no gist to make such targeted 

attention shifts. Instead, a subject needs to fixate on every single card to check whether a 

card has desired attribute values. Indeed, the searches for third cards shown in Figure 5.9 

are very much exhaustive. 

This difference between exhaustive and targeted searches explains why scanpaths in word 

trials have less diagonal saccades than scanpaths in picture trials. So what appears to be a 

systematic visual search might rather be a search done out of necessity due to lack of proper 

visual features to aid the search in peripheral regions. Similarly, abundance of diagonal 

saccades in a picture trial is not the result of an absence of systematicity as would be 

suggested by Ponsoda et al. (1995). It is rather the result of subjects taking a targeted 

"shortcut" by using visual features that can be processed by peripheral vision during a 

systematic search. 
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Types of visual search 

There are several competing explanations of how humans accomplish visual search tasks. 

Early studies of visual search suggested that visual search may be sequential (only one 

object is encoded at a time), because of the positive slope produced by the RT×set size 

function. The visual search observed in the set tasks is clearly not sequential. As was 

discussed earlier, subjects need as little as 600ms to extract such complex visual 

information as identifying the largest group of cards sharing a common attribute value 

among 12 SET cards (Nyamsuren & Taatgen, 2013c). This result clearly refutes the 

possibility that visual search is a purely sequential search. There are certainly some parallel 

processes involved. 

An alternative explanation of sequential search is a limited-capacity parallel search 

(Townsend, 1990). In this paradigm, several visual objects can be encoded at the same 

time, but the number of objects is limited by the capacity of the visual process. It is highly 

unlikely that limited-capacity visual search is used in set tasks. SET belongs to a group of 

tasks under the comparative visual search (CVS) paradigm. Previous studies showed that 

the eye movement patterns in CVS tasks show clear signs of well-structured sequential 

search (Pomplun, Sichelschmidt, Wagner, Clermont, Rickheit & Ritter, 2001). Eye 

movement data from the two set tasks also suggest that searches are not parallel. For 

example, just like other fixation sequences, the fixation sequence shown in Figure 5.9 

exhibits signs of a highly structured sequential search. In another example, we found 

subjects often end the trial with verification fixations. Verification is characterized by 

Figure 5.9: An example of an annotated raw fixation sequence produced by 

wst03 during the trial shown in Figure 3a. Each lane with solid boundaries 

represents a card, whereas each sublane with dashed boundaries represents an 

attribute within a card. The lane labeled as C7 is the highlighted card. The other 

two cards that belong to the set are C3 and C12. Each rectangular block 

represents a fixation on a card's attribute value. Red blocks represent fixations 

where a subject paired a highlighted card with another card, while blue blocks 

represent consecutive search for a third card. Green blocks are fixations where 

the subject found a set and made final verifications. 
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repeated back and forth fixations on three cards forming a set. Such fixations were observed 

in both picture and word set trials. Such fixations would not have been necessary in limited-

capacity parallel searches. Similar verification fixations were also observed by Pomplun et 

al. 

As a third alternative, Wolfe proposed that all visual search tasks require the deployment 

of attention to the target, but such a deployment is guided by pre-attentive parallel 

processes (Wolfe, 1992, 1998; Wolfe & Bennett, 1997). Furthermore, Wolfe suggested that 

search tasks only vary with respect to the degree in which they can use parallel processes to 

deploy attention. It is quite likely that the visual search used in the set tasks follows Wolfe's 

theory. It certainly explains why subjects can quickly capture scene gists (Pollatsek, Rayner 

& Collins, 1984; Potter & Levy, 1969), but also exhibit sequential visual search behavior 

such as in Figure 5.9. Conformance to Wolfe's theory also adds additional credibility to our 

explanation of why visual search strategies are essentially the same in picture and word 

sets. Visual search is the same in the two tasks, but the use of parallel processes in word set 

is impaired by the poor acuity of the text. 

Cognitive Models 

The major question we want to answer using cognitive models is whether the differences 

in cognitive processes that were described in the previous section can really account for the 

behavioral differences subjects have shown in picture and word trials. Our previous studies 

(Nyamsuren & Taatgen, 2013a, 2013b) have already described the cognitive model for 

picture set. For this study, we have reused the same model to simulate human behavior in 

picture trials. We have also developed a second model that does the word trials. 

The two models are nearly identical. Both models use the same set of values for 

adjustable parameters and follow the same strategy of playing the game. The only 

difference lies in the processing requirements for the two types of cards. 

Cognitive architecture 

We have used the ACT-R cognitive architecture (Anderson, 2007) to develop the models. 

ACT-R consists of several modules, such as a Vision module for handling visual 

processing, a Declarative module for simulating declarative memory, and a Goal module 

for tracking the model's state and objectives. The modules mostly communicate with each 

other via the Procedural module, which allows the modeler to write task specific production 

rules. However, in limited cases, modules can also spread activation to other modules 

simulating low-level cognitive processes. Figure 5.10 shows the internal working of the 

most important modules in detail. A description of the figure will be provided next. 

We used several extra modules that are not part of ACT-R by default. The extra module 

most important to the task is the Pre-attentive and Attentive Vision module (Nyamsuren & 

Taatgen, 2013a) or PAAV for short. The PAAV module provides several functionalities 

that are otherwise not supported by ACT-R's default vision module. The other two extra 

modules are Threaded Cognition (Salvucci & Taatgen, 2008) and Base-Level Inhibition 

(Lebiere & Best, 2011). With Threaded Cognition, we assume that there are two separate 

and parallel meta-controls governing the overall top-down strategy and the bottom-up 

visual attention shifts, respectively. Lastly, the Base-Level Inhibition module provides a 

short-term activation inhibition of items in declarative memory. This module is necessary 

for modeling complex short-term tasks in which several alternatives need to be stored in 

and retrieved from memory. 



84 |  The effect of visual representation style in problem-solving 

 

 

 

 

Differential acuity 

PAAV recognizes that not everything in a visual scene can be seen [by the model] at any 

given moment. Human vision is limited, especially in the extra-foveal region (Rayner, 

1998). The further away an object is from a current focal point, the harder it is for the 

human visual system to recognize its features. Furthermore, different features, such as color 

or shape, have different acuities (Kieras, 2010, 2011). For example, color has a higher 

acuity than shape. This means that the visual system will be able to recognize the color, but 

not the shape, of an object that is in a certain distance from the foveal point. The PAAV 

module uses different acuity functions for color, shape, size and shading with color having 

the highest acuity. Text is also supported by PAAV in a sense that any word is treated as a 

shaded rectangular object of a same size as the word. However, there is a separate acuity 

function for recognizing the pattern of individual letters in the word. In order for individual 

letters to be recognized, a word should be inside the foveal region. PAAV considers this 

region as a circle with a radius of one degree of angular distance from the point of fixation. 

This estimation is provided in (Kieras, 2010). 

Scene gist and visual iconic memory 

It is often reported that human vision can pre-attentively capture the gist of a visual scene 

(Pollatsek, Rayner & Collins, 1984; Potter & Levy, 1969). This is a quick and parallel 

process that captures just enough details to further guide visual attention to informative 

parts of the visual scene for a finer grained analysis. The PAAV module also captures the 

gist and stores it in iconic memory. Iconic memory may contain complete information for 

some objects, such as an object's color, shape, shading and size. However, for most visual 

objects, iconic memory will contain incomplete information (e.g. color only) due to limited 

acuity. Furthermore, an object's features in iconic memory, despite trans-saccadic 

Figure 5.10: Internal workings and external connections between vision, 

declarative, goal and procedural modules of ACT-R architecture. These four 

modules provide the most of the functionalities necessary for modeling SET 

tasks. 
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persistence, decay after a short period of time (currently 4 sec) if they are not accessible via 

peripheral vision anymore. 

Attentional guidance 

It is well known that the human visual system prioritizes parts of the visual scene for 

attentional capture (Mackworth & Morandi, 1967). This process is a combination of 

bottom-up and top-down guidance (Knudsen, 2007; Treue, 2003). Bottom-up guidance 

draws attention to the parts of the visual scene that are most salient due to the inherent 

properties of the scene. For example, a single green card among red cards will draw 

attention due to a pop-out effect. On the other hand, top-down guidance draws attention to 

the parts of a scene that are relevant to the current task at hand. For example, if a player is 

looking for a green set, then all green cards will be prioritized for attentional capture, while 

all non-green cards will be inhibited. The PAAV module mimics this process by calculating 

top-down and bottom-up saliency values for every object in iconic memory and choosing 

the one with the highest overall saliency as the next point of attention. 

Spreading activation from iconic memory 

In ACT-R, knowledge chunks are stored in declarative memory. Each chunk has an 

activation value that reflects its recency and frequency of retrieval. The chunk with the 

highest activation has the highest probability of retrieval. However, it has also been 

observed that visual stimuli can influence the result of memory retrieval (Wais, Rubens, 

Boccanfuso & Gazzaley, 2010). The PAAV module simulates this effect whereby each 

visual object in visual iconic memory spreads activation to every matching chunk in 

declarative memory. So, depending on the content of iconic memory, results from two 

identical retrieval requests can differ. ACT-R's default vision module also allows spreading 

activation from an encoded visual object to declarative memory, thereby simulating a more 

top-down influence. 

Model details 

Any ACT-R model is essentially a set of production rules expressing task specific 

instructions. A production rule consists of a left-hand side condition part and a right-hand 

side action part. A production rule fires when all of the conditions in the right hand side are 

met. Only one production rule can fire at a time. For example, if the condition part says that 

the current goal of the model is to attend the highlighted card, then the action part tells the 

PAAV module to shift attention. The right-hand side action part can also set the goal of the 

model to a new one. The production rules in models of set tasks implement the strategy 

described next. 

Strategy 

Although we used two separate models, both of them use exactly the same strategy. This 

paper describes the strategy only on a level of details necessary to understand the inner 

workings of the model. Please, refer to Chapters 2 and 3 (Nyamsuren & Taatgen, 2013a, 

2013b) for a more complete description. The following is a description of the model’s 

general strategy: 

1. Focus attention on the highlighted card HC. Let CardHC be a set of four attribute 

values in the highlighted card. 

2. Retrieve any attribute value VDM from declarative memory with AV being the attribute 

type of VDM. 
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3. Pick the attribute value VHC from CardHC that also has AV as attribute type. 

4. If VDM = VHC, then use dimension-reduction by defining search space G as a group of 

cards that has VHC. If VDM ≠ VHC then use dissimilarity strategy by defining search space G 

as a group of cards that does not have VHC. 

5. For every card C2 in search space G, search for a third card C3 that forms a set with 

HC and C2. If a set is found, then finish the trial. 

6. If there is no more card C2 to choose from search space G, then go back to step 1. 

The critical step is step 2, in which a top-down influence (the highlighted card) and a 

bottom-up influence (the prominence of attribute values in iconic memory) determine what 

attribute value the model is going to pursue. 

Although the two models use the same strategy, there are several essential points of 

difference that rise due to presentation differences. 

Visually encoding a card 

The model for picture set can encode all four values of a card in a single fixation, since 

those values are perceived as four integral features of a single object. However, the model 

for word set has to fixate on each individual value of a card, since each word is treated as a 

visual object of its own. Therefore, instead of just one fixation, four fixations are needed 

just to encode all four values in a word set model. 

Scene gist in visual iconic memory 

 
 

The model for finding picture sets has a reasonably detailed representation of the trial in 

its iconic memory from the start. The acuity limitation of a text prevents the model for word 

trials from building up iconic memory with the same level of detail. Figure 5.11 contrasts 

the contents of iconic memories of the two models after the first fixation on the highlighted 

card was made. Except for three cards on the left, the model for a picture trial has near 

complete information about the visual scene (Figure 5.11a) in its iconic memory. This 

information is enough to calculate both bottom-up and top-down saliencies for cards to 

guide attention shifts. The model for word trials has barely any information about the visual 

scene (Figure 5.11b). All it has is an encoded value "TWO" for the Number attribute and a 

Figure 5.11: A visualization of the content of the model's iconic memory after 

the first fixation on the highlighted card (cards with dashed boundaries) in (a) 

picture and (b) word trials. Those are the same trials as shown in Figure 3. 
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pre-attentively recognized pattern of individual letters for "RED". There is no information 

to guide attention shifts from either bottom-up or top-down perspectives.  

Dimension-reduction 

Both models have a tendency to use dimension-reduction in the early stages of a trial. 

Spreading activation from the encoded highlighted card biases the retrieval process. As a 

result, values that belong to a highlighted card have a slightly higher chance of retrieval 

(step 2 in the models' strategies). However, iconic memory also influences the retrieval 

process through spreading activation. Color values have the highest acuity, hence a higher 

chance of entering into iconic memory. More color values in iconic memory spread more 

activation to respective values in declarative memory. As a result, color values have a 

higher chance of being retrieved from declarative memory and used in dimension-

reduction. In picture trials, this process explains why subjects often prefer color for 

dimension-reduction to any other attribute (Figure 5.6a). However, in a model for word 

trials, iconic memory has a negligible influence on the retrieval process, since it is almost 

empty. Hence, all attributes have a near equal chance of retrieval, thereby removing any 

possible preference toward a specific attribute. 

Scanpaths 

The model for picture set can prioritize locations for attention shifts to the parts of a scene 

that are both salient and relevant to the current goal reasonably well. For example, in the 

trial shown in Figure 5.11a (and assuming the model is looking for a set among blue cards) 

it can predict with high accuracy where all of the blue cards are based on the content of 

iconic memory. Such luxury is not available to the model for word set. Its iconic memory is 

almost empty, and the model has to shift attention based purely on the prior knowledge of 

the structure of the scene. It results in a significant difference between picture and word set 

models in terms of how they scan the search space G (steps 4 and 5 in the models' 

strategies). The picture set model is fairly efficient since it scans only those cards that 

belong to search space G. The word set model cannot identify pre-attentively which cards 

belong to search space G, so it scans all cards. Such scanning is done by shifting attention 

to the next closest card. 

Model results 

Both picture and word set models had to play 100 times through the same block of 32 

trials that the subjects did during the experiment. The following sections discuss the results 

of these runs. 

Models' fits 

It is extremely hard to properly estimate a general fit of a model simulating a task as 

complex as SET. If the models of picture and word set, respectively, are valid, they should 

produce fixation sequences similar to sequences of human subjects. We have compared 

subjects' collapsed fixation sequences to collapsed sequences produced by models. The 

resulting comparison scores were taken as an estimation of the models' fits.  

We have used ScanMatch (Cristino, Mathôt, Theeuwes & Gilchrist, 2010) as a method 

for comparing fixation sequences. ScanMatch provides several mechanisms that make it 

more suitable for comparing eye movement data than more conventional methods, such as 

an estimation of the Levenshtein distance (Levenshtein, 1966). ScanMatch is based on the 

Needleman–Wunsch algorithm (Needleman & Wunsch, 1970) that uses a substitution 
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matrix to maximize the similarity score resulting from a comparison of two sequences. That 

substitution matrix contains scores for aligning every possible combination of two 

elements. Comparisons based on that substitution matrix allow for alignments based on 

overall similarity patterns rather than the binary equalities of individual elements in the 

sequence. This feature is important considering a certain degree of randomness in the 

pattern of fixations that arises when a scene is relatively complex. 

We created substitution matrices for each trial. Each matrix contained scores for aligning 

a trial's cards with one another. Scores were calculated based on the similarity of two cards 

with respect to the highlighted card in the trial. Next, a subject's collapsed fixation sequence 

for each trial was compared to the corresponding 100 collapsed fixation sequences 

produced by the model on the same trial. Finally, the overall mean scores were taken for 

each subject as an estimation of the model's fit to that particular subject's data. The model's 

general fit to the experimental data was calculated as a grand mean of all of the subjects' 

scores. The scores were calculated separately for picture and word trials. We also generated 

random fixation sequences and compared them to the subjects' collapsed sequences the 

same way the models' collapsed fixation sequences were compared. This gives chance-

based lower boundaries for similarity scores against which the models' scores can be 

compared. 

Table 5.4 shows grand means of similarity scores calculated for the models' sequences 

and random fixation sequences. The fixation sequences produced by the two models have 

significantly higher similarity scores than the fixation sequences generated randomly. The 

significance was calculated separately for the two trial types using one-way within-subject 

ANOVA. The analysis result indicates that the similarity of the models' fixation sequences 

to the subjects' sequences is significantly above chance level.  We can conclude that both 

models have an explanatory capability and capture the subjects' behavior at least in some 

degree.  

 

Table 5.4: Grand means of similarity scores after comparing each subject's collapsed 

fixation sequences to randomly and model generated fixation sequences. 

 

 Model Random F(1, 17) p value 

Picture 

set 

M=-0.347, 

SE=0.013 

M=-0.438 

SE=0.008 
219.5 < 0.0001 

Word 

set 

M=-0.386 

SE=0.007 

M=-0.460 

SE=0.006 
359.6 < 0.0001 

 

Finally, we did a cross comparison of fixation sequences between human subjects. The 

resulting grand means are M=-0.317 (SE=0.010) and M=-0.294 (SE=0.007) for picture and 

word trials respectively. Those scores are the upper boundaries of similarity against which 

the models' fits can be evaluated. For example, in picture set, a perfect model of a general 

human player will produce a fixation sequence with the similarity score of -0.317 when 

compared to a human fixations sequence. However, any model that has no explanatory 

power of human behavior in picture set will produce the similarity score of -0.438 or below. 

The picture set model has the similarity score of -0.347. It is not a perfect fit, but still quite 
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better than the model with no explanatory power. Both models definitely do not produce the 

best possible fit. However, some deviation is expected, considering the quite complex 

nature of the task.  

Reaction times 

Figure 5.12 shows boxplots of reaction times for both picture and word set models 

compared to the respective reaction times from subjects. Both models' reaction times 

increase as a function of set level. This is to be expected, since at the beginning stages of 

the trial, both models prefer to search for a set among cards that are similar to a highlighted 

card. This is essentially a search through dimension-reduction, since the models ensure that 

cards share at least one attribute value with a highlighted card. 

 

 

Dimension-reduction 

The model for picture set has a relatively high tendency for dimension-reduction, as is 

shown in Figure 5.13. Color is prioritized for dimension-reduction more than any other 

attribute type (Figure 5.13a), which is similar to our experimental results (Figure 5.6a). This 

priority is a result of color values being more readily available in iconic memory than 

values of any other attribute type due to their higher acuity. Dimension-reduction is 

preferred at the beginning of the game (Figure 5.13b) with its usage gradually decreasing as 

the trial progresses. At step 2 of the model's strategy, the values of the highlighted card 

have a higher chance of retrieval. However, those same values get inhibited on consecutive 

retrievals. This simple process results in an overall pattern of dimension-reduction that 

resembles the one shown by human subjects (Figure 5.6b). As in our previous study 

(Nyamsuren & Taatgen, 2013b), the picture set model exhibits a higher tendency for doing 

dimension-reduction than the human subjects. The most likely explanation for this 

difference is that not all instances of dimension-reduction were captured from the human 

data. Because only blocks of consecutive collapsed fixations with a chance probability of 

less than 5% have been included in the analysis, occasional wandering fixations produced 

by human subjects can significantly decrease the calculated proportions of dimension-

reduction in the human data. On the other hand, the model's attention shifts are precise with 

no wandering fixations or other forms of noise artifacts. 

Figure 5.13 and Figure 5.6 show that the model for word set is able to replicate subject 

behavior even better than the picture set model. The model exhibits a very slow, but steady 

Figure 5.12: The subjects' reaction times (a) compared to reaction times from 

100 runs of the experiment with picture and word set models (b). 
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decrease in dimension-reduction usage over the course of a trial, similar to experimental 

results (Figure 5.13b). We did the same mixed-effect linear regression analysis that was 

done on the experimental data (which includes all collapsed fixations in positions between 

20 and 80). The main and interaction effects shown in Table 5.5 indicate that the decrease 

in dimension reduction in word trials is significant. The reader can also refer to Appendix E 

for an additional analysis based on Autoregressive Integrated Moving Average models 

applied to data on Figure 5.13b. 

 

 
 

Table 5.5: The results of linear mixed-effect regression analysis of a predicted proportion 

of dimension reduction based on a collapsed fixation position and a trial type. 
 

 Estimate Std. Error t value p value 

Intercept 

(Picture trial) 
0.8399 0.0096 87.49 < 0.001 

Fixation position -0.0053 0.0001 -55.42 < 0.001 

Word trial -0.4898 0.0071 -68.83 < 0.001 

Fixation position and word 

trial interaction 
0.0039 0.0001 28.70 < 0.001 

 

As Figure 5.13a shows, there is no clear preference toward a specific attribute in word 

trials. This is because the acuity difference among attribute types is gone. However, we 

know that the word set model uses dimension-reduction in a similar manner as the other 

model. The obvious question is why there is no clear indication of its usage in Figure 5.13b. 

The answer likely lies in the different scanpaths that the model for word set produces. The 

paths with dimension-reduction are revealed by identifying subsequences of continuous 

fixations on cards that share a common value with a highlighted card. It is quite easy to 

Figure 5.13: (a) The usage of attribute types in similarity-based scanning as a 

proportion of the trial's collapsed fixations sequence. (b) The changing 

proportion of trials in which dimension-reduction was used. The proportions are 

calculated as a function of the collapsed fixation position x within a trial. The 

proportion on position x is calculated by counting the trials that have a 

dimension-reduction block that include fixation at x. The lengths of blocks from 

word trials are also normalized to match the length scale of picture trials. 
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identify such subsequences in scanpaths produced from picture trials, since the model does 

targeted searches supported by the content of iconic memory. On the other hand, the word 

set model does exhaustive searches by attending every card. This makes it hard to identify 

subsequences of continuous fixations on similar cards. This results in the rather 

uninformative near flat line shown in Figure 5.13b. The fact that the true proportion of 

dimension-reduction in word set is as high as 40% becomes apparent in a verification 

phase. During this verification phase, both subjects and model make consecutive fixations 

on the same set of cards to verify whether a valid pair was made or the valid set was found. 

Examples of fixations belonging to the verification phase can be seen in Figure 5.9, in 

which such fixations are marked by red and green blocks within the fixation sequence 

diagram. 

 

 
 

Table 5.6: The result of a linear mixed-effect regression analysis of a predicted similarity 

to a highlighted card based on a subsequence's position and a trial type. 

 

 Estimate Std. Error t value p value 

Intercept 

(Picture trial) 
1.585 0.005 324.6 < 0.001 

Subsequence position -0.013 0.000 -20.2 < 0.001 

Word trial -0.197 0.005 -36.6 < 0.001 

Subsequence position and 

word trial interaction 
0.014 0.000 18.2 < 0.001 

 

The picture set model shows a clear gradual shift from similarity to dissimilarity-based 

search. This gradual shift shown in Figure 5.14 resembles quite closely the one shown in 

Figure 5.7 obtained from experimental data. The picture is different for the word set model. 

The mean similarity to a highlighted card stays on more or less the same level. Results from 

mixed-effect regression analysis are shown on Table 5.6. The negative main effect of 

Subsequence shows that similarity to a highlighted card in a picture set trial decreases with 

Figure 5.14: The mean overall similarity of all cards in a particular subsequence 

to the highlighted card. The values are calculated separately for picture and word 

trials. 
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each consecutive subsequence. However, the positive interaction effect of Subsequence 

negates the negative main effect of Subsequence in a word set trial. Combined 

interpretation of the main and interaction effects suggest that there is no decrease in 

similarity to a highlighted card in word trials. The slight downward bump between the 4th 

and 9th subsequences is the only visible clue that there is a preference toward similarity at 

the beginning. This lack of an obvious effect is explained by the same need for an 

exhaustive search that makes it hard to distinguish dimension-reduction scanpaths from 

scanpaths where dissimilarity-based search is used. 

Systematic versus unsystematic scanpaths 

Similar to human subjects, the two models also show a difference in scanpaths in terms of 

saccade directions. 

The density plot in Figure 5.15a clearly shows these differences. Like human subjects, the 

model for word set shows a higher preference for vertical and horizontal saccades. 

However, the distributions are narrower and have higher peaks. This is to be expected, 

since the model is much more precise than human eye movement data. 

The radar chart shown in Figure 5.15b fails to show considerable differences between the 

two models that is present in Figure 5.15a. It most likely due to the combined effect of 

discrete categorization and averaging that is required for calculating proportions for each 

saccade category. However, a logistic mixed-effect regression analysis applied to the model 

data, shown in Table 5.7, reveals similar main and interaction effects of trial type and trial 

level as found in subject data. Probabilities of diagonal saccades in picture and word trials 

are 0.45 (the intercept) and 0.39 (the main effect of word trial), respectively. Trial level 

again has a positive effect on the probability of a diagonal saccade in picture trials (the 

main effect of Trial level). However, such an effect is absent in word trials, as shown by the 

interaction effect on Table 5.7. 

 

Table 5.7: The results of logistic mixed-effect regression in which the predicted value is 

the probability of a diagonal saccade. 

 

 Estimate Std. Error z value p value 

Intercept 

(Picture trial) 
-0.197 0.012 -16.22 < 0.001 

Word trial -0.229 0.013 -17.04 < 0.001 

Trial level 0.037 0.004 9.49 < 0.001 

Word trial and trial 

level interaction 
-0.041 0.004 -9.33 < 0.001 

 

This decrease in diagonal saccades is mostly the result of an absence of iconic memory 

content, which would direct attention shifts straight to the cards relevant to the search. 

Instead, the word set model resorts to shifting attention to the closest card. In most cases, 

the closest card is a card that is in either in the same column or in the same row. 
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Figure 5.15 shows that both models have a tendency toward horizontal saccades with East 

and West having the highest proportions. Another interesting aspect is the fact that both 

models produce a higher proportion of diagonal saccades than subjects. This should be 

considered together with the fact that neither of the models do unsystematic searches. At 

any time, the models' attention shifts are always guided by some top-down goal. This result 

indicates that an estimation of diagonal/non-diagonal saccades is not the reflection of the 

systematicity of the search, but rather an indication of the structure and presentation style of 

the scene. In other words, subjects may not have explicit preference toward diagonal or 

non-diagonal saccades during a systematic search. Proportions of two saccade types are 

likely to be defined by a function with two variables: 1) how structured the scene is (e.g. 

visual stimuli are organized in grids or positioned randomly) and acuity properties of the 

scene (high versus low acuity stimuli). The fact that model shows considerable amount of 

diagonal saccades while doing a systematic search (Figure 5.15b) supports the dependence 

of diagonal/non-diagonal saccades on the scene structure, while dependence on acuity 

properties is supported by subject data (Figure 5.8b) where there is a difference in saccade 

proportions between picture and word sets.  

Discussion and Conclusion 

In the previous section, we have described two nearly identical models. Both models use 

exactly the same strategy and the same set of values for adjustable parameters. However, 

the two models produce behavioral data that on the surface look very different. The entire 

difference in behavior can be explained by a simple change in presentation style of the task. 

Furthermore, both models show a good fit to the experimental data, suggesting that a 

similar change in presentation style affected human subjects in much the same way: the 

behavioral data may change significantly without changes in overall strategy.  

The contrast between the picture and word versions of SET shows that the style of 

presentation alone can have a drastic effect on performance in a problem-solving task. With 

no changes in isomorphic structure, a simple replacement of an iconic representation with a 

textual representation resulted in more than a twofold increase in reaction times. However, 

as experimental results and model simulations show, the overall strategy, the way the 

problem-solving task is approached, did not change. Our original model for picture set was 

adapted to play word set with the minimum changes necessary to compensate for the 

Figure 5.15: A radar chart for proportions of saccades in each saccade category. 
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absence of the perceptual components of the game. Yet, the model for word set was able to 

closely replicate subjects' behavior with respect to reaction times and eye movements. 

Furthermore, the model provides a perspective from a level of individual cognitive 

processes. We explored how task performance may be affected by visual acuity, differences 

in visual encoding and dynamics of iconic memory. Exploring how these processes change 

based on the nature of a task, helps us to understand how subjects manifest different 

behaviors in two versions of SET, while still following the same strategy.  

It is interesting how a simple change in visual presentation style can result in what can be 

called a cascading domino effect in cognitive processes. Change in presentation style 

triggers change in a cognitive process that itself triggers change in one or more other 

processes. The changes propagate like a chain reaction. In SET, replacing a high acuity 

stimulus with a low acuity stimulus removed the advantage of peripheral vision. This lack 

of peripheral vision resulted in a lack of content in iconic memory and imposed changes on 

how a visual stimulus, such as a card, was encoded. Changes in iconic memory and 

encoding further affected the prioritization of attention shifts that manifested itself in 

different scanpaths. All those changes added up, resulting in increased reaction times and a 

different pattern of fixation sequences. Furthermore, the data initially appear to give an 

overall false impression that there are fundamental changes in the strategy subjects use to 

find a set. However, results of this study do in fact show that changes in presentation style 

do not necessarily trigger changes in how a subject approaches a problem-solving task. 

Instead, there are more subtle changes on the level of cognitive processes. The strategy 

remains the same, but the cognitive processes that are used to implement the overall 

strategy can change. Such a change can be either beneficial or damaging to performance. 

For example, in picture trials, peripheral vision is extremely useful in locating cards 

relevant to the search. In word trials, peripheral vision does not provide any leverage, given 

that the only option is that of deliberate top-down scanning.  This transition from faster 

low-level processes to more top-down cognition has a rather significant negative effect on 

reaction times. 

Jacob and Hochstein (2008), who originally proposed dimension-reduction, assumed that 

the bias toward similarity in SET is a result of the highly perceptual nature of the game. 

They argued that players prefer to search for lower level sets, because it is easier to identify 

similar cards using bottom-up visual processes. Our experiment with word set showed that 

this is not the case. Even in absence of bottom-up encouragement, subjects needed less time 

to find lower level sets, indicating that bias toward similarity still exists. This bias is 

definitely part of a deliberate strategy, rather than an artifact of mechanisms based on 

perceptual similarity. However, we are yet to identify what exactly causes players to look 

for similar cards first, rather than for dissimilar cards. 

Exploring beyond SET 

It is completely possible that the changes in underlying cognitive processes are 

responsible for better performances in the Marble Drop game. Meijering at al. (2010) also 

acknowledge the importance of context, although from a perspective of higher-order 

reasoning. The advantage of Marble Drop is that it provides a bottom-up visual context 

using colors, trapdoors and bins of decreasing heights.  This context is more intuitive and 

easier to process using bottom-up cognition. One obvious example is the clear advantage 

peripheral vision provides in Marble Drop. It is much easier to detect difference in color 

and color-grades using peripheral vision, than to deliberately compare numeric values. It is 
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the possibility to use visual processes that are bottom-up, pre-attentive and parallel that 

makes Marble Drop an easier game. 

Smarter than expected? 

One can argue that bottom-up processes should be able to extract at least some semantic 

information in order to provide a necessary performance boost in a problem-solving task.   

For example, in Marble Drop, it is easier to visually differentiate and compare payoffs 

due to a distinct color-grade associated with each payoff. However, this also implies the 

presence of some form of a semantic association between darker color and a higher payoff 

at the pre-attentive level. If there is no such association, deliberate comparison will still be 

necessary. However, there is a mounting amount of research suggesting that pre-attentive 

visual processes are not as dumb as they were considered to be before (Proverbio, Zotto & 

Zani, 2007). It is often ignored how much information is processed subconsciously. For 

example, richer information in iconic memory that is processed subconsciously seem to 

give participants a significant performance boost in picture set over word set. It is further 

likely that even more complicated processing at the semantic level is done by our visual 

system. Rensink (2007) proposed an architecture where a certain amount of semantic 

information is processed pre-attentively by the human vision system. Perhaps it is exactly 

that kind of visual information that is readily available in picture trials that makes the 

original version of the game so much easier than the word version of the game. In word 

trials, the semantic information that otherwise would have been extracted more efficiently 

by visual bottom-up processes needs to be processed by deliberate top-down reasoning. 

Exploring through models 

Models are useful tools for exploring differences that are otherwise difficult to reveal by 

means of statistical analysis. Computer modeling is the only objective way currently 

available to explore the behavior of a complex modular system in which changes in one 

module can propagate throughout the entire system. The human cognitive system is 

definitely a good representative of such. For example, it is hard to statistically calculate the 

outcomes of the domino effect described in the previous subsection. Instead, we used a 

computational model based on a cognitive architecture to directly simulate these outcomes. 

The model for word set worked quite well, especially considering the fact that it was 

directly adapted from the existing model of picture set with minimal changes to suit the 

new presentation style. 

Data and source code 

All of the data related to this study, including the model source code and the experiment 

data can be downloaded via the following link: http://www.ai.rug.nl/~n_egii/models/. The 

source code for the PAAV module can be downloaded at 

http://www.ai.rug.nl/~n_egii/models/codes/paav-module-no-vstm.lisp 
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Abstract 

This paper introduces a framework of human reasoning and its ACT-R based 

implementation called the Human Reasoning Module (HRM). Inspired by the 

human mind, the framework seeks to explain how a single system can exhibit 

different forms of reasoning ranging from deduction to induction, from 

deterministic to probabilistic inference, from rules to mental-models. The HRM 

attempts to unify previously mentioned forms of reasoning into a single coherent 

system rather than treating them as loosely connected separate subsystems. The 

validity of the HRM is tested with cognitive models of three tasks involving 

simple casual deduction, reasoning on spatial relations and Bayesian-like 

inference of cause/effect. The first model explains why people use an inductive, 

probabilistic reasoning process even when using ostensibly deductive arguments 

such as modus ponens and modus tollens. The second model argues that visual 

bottom-up processes can do fast and efficient semantic processing. Based on this 

argument, the model explains why people perform worse in a spatial relation 

problem with ambiguous solutions than in a problem with a single solution. The 

third model demonstrates that statistics of Bayesian-like reasoning can be 

reproduced using a combination of a rule-based reasoning and probabilistic 

declarative retrievals. All three models were validated successfully against 

human data. The HRM demonstrates that a single system can express different 

facets of reasoning exhibited by the human mind. As a part of a cognitive 

architecture, the HRM is promising to be a useful and accessible tool for 

exploring deeps of human mind and modeling biologically inspired agents. 
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Introduction 

In this paper, we introduce a framework that attempts to unify various approaches to 

human reasoning. The Human Reasoning Module, or HRM, is an implementation of this 

framework developed as a part of the ACT-R cognitive architecture (Anderson, 2007). As 

opposed to ACT-R's core modules that represent specific types of cognitive resources such 

as vision or memory, the HRM does not add a new type of cognitive resource. The HRM 

extends the theoretical frameworks and corresponding computational functionalities of the 

existing modules of ACT-R. Therefore, the HRM is both a theory and a tool for modeling. 

As a theory, it advocates for a specific structure of knowledge organization in our 

declarative memory. The structure is still based on knowledge chunks, but adds specific 

requirements on chunk types and its slots. Furthermore, the HRM advocates the existence 

of task-general procedural knowledge that gives us the ability to reason and solve problems 

based on real-time information and previous experience. The proposed structures of 

declarative and procedural knowledge define grammar, axiom schemata and inference rules 

of human logic. As a tool, the HRM both extends and constrains the functionality of ACT-

R's declarative module and also adds a set of task-general production rules to ACT-R's 

procedural module. Ideally, if the HRM is a valid model of human reasoning it should be 

able to tackle any form of reasoning process. However, the HRM's current unification 

attempt is limited to two dimensions depicted in Figure 6.1. The next subsection discusses 

in details these dimensions. 

 

 

Inductive and deductive reasoning 

At the core of the HRM, there is an assumption that the human general reasoning skill is 

inherently probabilistic or inductive. Any true form of classical deductive reasoning 

requires a closed world assumption stating that what is not currently known to be true is 

false. This is an extremely unpractical assumption in the real world full of uncertainties 

(Rajasekar, Lobo, Minker, 1989), and we subconsciously or consciously recognize this fact. 

Cummins (1995) demonstrated that even when someone is reasoning with ostensibly 

deductive arguments one still uses an inductive, probabilistic reasoning process. Further 

uncertainty arises due to limitations of our cognitive resources: our perception of the world 

can be noisy or limited and our memory may be forgetful. With such uncertainties, any 

deductive system will fail the tests of validity and soundness, necessary requirements for 

 Figure 6.1: Two dimensions of human reasoning that the HRM attempts to 

unify. 
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any formal deductive inference (Jeffrey, 1981). Furthermore, we do not often try to satisfy 

both of these requirements in our reasoning process (Thompson, 1996). Therefore, the 

HRM operates under the open world assumption, what is not proven is not necessarily 

false, and tries to prove truthfulness rather than falsity of knowledge. 

However, the HRM does not exclude a possibility that deductive reasoning occurs within 

the context of specific tasks. Let us assume a specific problem that eliminates 

environmental uncertainties by clearly and unambiguously specifying contextual 

boundaries, constraints and rules. We can further assume that the problem is tractable 

within capacities and limitations of our cognitive resources, and there is no interference to 

the solution from our past knowledge outside of the problem's context. Such context will 

follow the closed world assumption, and, hence, deductive reasoning may be used. 

Therefore, in the HRM, there are no two separate processes for deductive or inductive 

reasoning. Instead, the HRM assumes that deductive reasoning is an instance of inductive 

reasoning over a specific domain of discourse with a near-zero uncertainty. A degree of 

uncertainty is the common dimension that implicitly unifies inductive and deductive 

reasoning in the HRM. 

Mental logic, mental models and bottom-up reasoning 

Next, the HRM further argues that general human reasoning does not necessarily rely on 

formal propositional forms and is not strictly top-down (conscious). There is a long history 

of debate over the theories of mental models and mental logic. The mental logic theory 

argues that a set of inference rules is applied to logical forms abstracted from stimuli (Rips, 

1983). A commonly agreed interpretation of mental models theory dictates that stimuli are 

abstracted into a form of mental diagram where configuration information reflects the 

relationship between entities (Banks & Millward, 2009; Johnson-Laird, 1983). In the HRM, 

the two theories are part of the same reasoning process. It is based on the assumption that 

these two are not mutually exclusive strategies. Roberts (1993) rightfully pointed to the fact 

that there are no obvious reasons why the two types of theories should be incompatible. 

Coney (1988) argued for individual differences based on a study showing that some people 

are better at spatial reasoning while others prefer reasoning based on formal propositions. 

Johnson-Laird (2004), a chief proponent of the mental models theory, admitted that the 

model theory does not imply that reasoners never rely on rules of inference. 

The HRM consolidates the two theories by assuming that a mental model is a form of 

working memory that allows convenient representation and storage of knowledge required 

for reasoning.  New premises, including ones not explicitly stated by the problem context, 

are assumed to be extracted on demand from the mental model during a rule-based 

inference similar to the mental logic. The mental model as a working memory simplifies a 

manipulation and retrieval of knowledge that otherwise has to be stored in a less efficient 

long-term memory. For example, items in the existing model can be easily reconfigured to 

produce an alternative model. The smaller amount of cognitive effort required by the 

mental model can explain why people prefer it over direct inference on given propositional 

forms. This interpretation of the mental model implies that it is not the main tool of 

reasoning by itself. This is a major distinction from Johnson-Laird's (2004) interpretation 

arguing that the probability of a conclusion is estimated based on the proportion of 

equipossible models in which it holds. Certainly, our interpretation of the mental model is 

more parsimonious. 
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At this point, we need to map a metal model onto a specific cognitive resource. Johnson-

Laird (2004) provided three functional requirements for the mental model: 1. A mental 

model should have an imagery capability to abstract meaning of premises into a mental 

diagram; 2. A mental model should be iconic; 3. Mental models should represent what is 

true, but not what is false. The cognitive resource that matches all above requirements is 

visual short-term memory (VSTM). It is specialized visuo-spatial mechanism in working 

memory for storing visual iconic information for a short duration (Logie, Zucco, Baddeley, 

1990). VSTM stores a factual representation of the current state of affairs and, therefore, 

implies that information in it is assumed true. Arguably, one of the most important roles of 

VSTM is to retain and combine information gathered across successive fixations to 

construct dynamically a high-level internal representation of the outside world (Henderson 

& Hollingworth, 2003; Rensink 2000a, 2000b). The same process of retaining and 

combining information is likely to be necessary for building a mental model. Furthermore, 

VSTM is likely to have at least some imagery capability (Phillips, 1983; Wintermute, 

2012). Phillips (1983), one of the first to introduce the concept of VSTM, emphasized that 

VSTM facilitates our ability to visualize problem space and is not just a sensory store. 

Jiang, Olson, and Chun (2000) reported that spatial information stored in VSTM includes 

not only object's location but also its relationship to other objects in VSTM. Based on these 

studies, we can conclude that VSTM is a suitable candidate for storing a mental model. 

Now, we should discuss whether VSTM is distinct from long-term declarative memory. 

Unlike declarative memory, VSTM needs to provide a fast and reliable access to 

information to allow the scene representation to be constructed dynamically across rapid 

fixations. Thus, VSTM is functionally different from declarative memory. Furthermore, 

Phillips (1983) made a clear distinction between VSTM and long-term visual memory 

noting that head injuries affecting long-term memory do not affect visualization. Baddeley 

(2003) argued for distinction between long-term memory and the multi-component working 

memory that includes visuospatial sketchpad with imagery capability, a functional analogue 

to VSTM. Neuroimaging studies suggest that the short-term memory responsible for storing 

visuo-spatial information is located in parietal lobe (Baddeley, 2003; Lum, Conti-Ramsden, 

Page, & Ullman, 2012; Xu & Chun, 2005) and not in the hippocampus that is commonly 

associated with declarative memory. Finally, Formisano, Linden, Di Salle, Trojano, 

Esposito, Sack, Grossi, Zanella, & Goebel (2002) showed that parietal lobe also performs 

distinct functions of mental imagery. All these factors together support our assumption that 

VSTM is a distinct memory suitable for building a mental model. 

 

 
 

The HRM treats the content of VSTM as a mental model unless it is irrelevant to the task. 

When available, the HRM extracts premises necessary for inference from the iconic content 

of VSTM. This process assumes that implicit semantic information is converted into 

explicit information. As an example, imagine that the VSTM contains visual objects as 

 Figure 6.2: The image on the left contains an implicit knowledge that the fork 

is on the left side of the plate. Such knowledge can be extracted to form explicit 

proposition on the right. 

(r-left-of fork plate)
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shown on left side of Figure 6.2. Each object has set of features describing it such as color, 

shape, spatial position, etc. There is also relative spatial information, such as, the fork being 

on the left side of the plate. This information was not encoded as part of any object. 

However, it implicitly exists inside VSTM even though we may not be consciously aware 

of it until it is parsed. The relative spatial position can be quickly extracted on demand and 

converted into explicit propositional form shown on the right side of Figure 6.2. Rensink 

(2007) indicated bottom-up visual processes may be able to process information at a 

semantic level subconsciously and even pre-attentively. It is feasible to assume that the 

same bottom-up processes are responsible for extracting explicit knowledge from implicit 

knowledge. Within the HRM, we refer to such process as visual bottom-up reasoning 

mechanism (not to be confused with inductive reasoning). We will further explore the 

mental logic and the mental model using an example task and a cognitive model based on 

the HRM. 

Deterministic and probabilistic inferences 

In the previous section, we have mentioned that the HRM uses rule-based inference that is 

inherently deterministic. This determinism relies on the assumption that the knowledge 

source is consistent and reliable. We also discussed that visual short-term memory is a 

source of knowledge for reasoning. As a form of working memory, VSTM provides a 

reliable access to reasonably consistent knowledge and does not violate above-mentioned 

assumption. Therefore, when the reasoning process relies on VSTM only it can be 

deterministic and deductive.  

However, there is a second source of knowledge, a long-term declarative memory. The 

HRM uses ACT-R's declarative memory (DM). As a proper model of human long-term 

memory, DM has inherited its peculiarities as well. DM can contain inconsistent and often 

competing knowledge. Knowledge chunk retrieval is governed by probabilities based on 

activation values. As a result, retrieved knowledge may not match completely what is 

requested, or retrieval may even fail. It has been already suggested that DM plays a central 

role in casual reasoning (Drewitz & Brandenburg, 2012). The uncertainty over retrieved 

knowledge from DM transforms the HRM's rule-based inference into probabilistic 

inference. Based on example models, this paper describes how the HRM is used to simulate 

casual deduction, pragmatic reasoning and even inductive Bayesian inference. 

Finally, little is known about the form of cognitive processes that provide meta-control 

over reasoning strategies. For example, how do we decide whether to use as a source of 

knowledge the mental model in a form of visual short-term memory or declarative 

memory? Not every problem context can be converted into an iconic form, and in such 

cases, there is no other choice but to use knowledge in declarative memory. However, what 

if both VSTM and DM contain relevant or even conflicting knowledge? The HRM 

introduces a simple, but effective cognitive construct referred to as a reasoning pipeline 

that addresses these issues. A reasoning pipeline assumes a sequential process where 

alternative strategies are used one by one in increasing order of cognitive effort required 

until a conclusion is reached. For example, access to VSTM requires less time than a 

declarative retrieval. Thus, the HRM prefers reasoning based on VSTM knowledge to 

reasoning on declarative knowledge. 
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Architecture of the HRM 

Knowledge representation in declarative memory 

Chunk types and chunks, instances of chunk types, represent factual knowledge in ACT-

R. A chunk type defines a set of slots its instance chunks can inherit. Those slots can 

contain values describing chunk's properties. Those values can be either other chunks or 

atomic values such as strings of characters or numeric values. ACT-R provides no 

restrictions on chunk types and chunks that can be defined by a modeler. The HRM restricts 

a modeler to a predefined set of chunk types thereby encouraging a commitment to a 

common knowledge structure that is not model specific. The core set of chunk types in the 

HRM are ones describing concepts, triples and inference rules. 

Concepts and triples 

The atomic unit of knowledge in the HRM is a concept. Any unit of knowledge that has 

distinct semantic meaning can be a concept. There are two types of concepts in the HRM: 

property instance and class instance. Property instance is any concept that is used to relate 

two other concepts semantically. As such, the knowledge organization inside the HRM 

revolves around a predicate construct referred to as a triple: (property subject object). 

Inside a triple, property establishes a semantic connection between subject and object. The 

following is an example of a triple: (r-left-of fork plate). In the HRM, r-left-of is a property 

instance that is used to represent a spatial relation between two class concepts. In example 

above, the meaning of the triple is equivalent to "a fork is on the left side of a plate". 

A property instance can also be used as triple's subject or object. For example, the HRM 

has two different property instances, r-left-of and r-dir-left-of, for expressing a similar 

spatial relation between two class instances. r-dir-left-of expresses semantically more 

restrictive spatial relation implying that subject is to the left of an object, and both subject 

and object are aligned vertically. Therefore, triple (r-dir-left-of fork plate) entails triple (r-

left-of fork plate). One way to express such one-way relation is to have another triple 

(entails r-dir-left-of r-left-of). Here, property instance entails semantically connects two 

other property instances instead of class instances. Otherwise, entails is no more special 

from other property instances such as r-left-of or r-dir-left-of. 

Most of the studies of human mental logic advocate for some form of predicate construct 

as a way of knowledge organization. We have chosen the triple form because it closely 

resembles a linguistic predicate typology consisting of subject, verb and object. It is the 

most common sentence structure found across different languages. Such commonality 

strongly indicates that underlying knowledge from which a sentence is constructed may 

also be organized in the same form consisting of subject, object and verb (Crystal, 1997). 

The HRM has a limited notion of time. A triple can be assigned a specific timestamp. For 

example, the sentence "John ate sandwiches yesterday and today" can be expressed with 

two triples with the same structure but different timestamps: 

  

(eat John sandwich (ts "yesterday")) 

(eat John sandwich (ts "today")) 

 

A special slot named ts is used to assign a timestamp. When necessary, the above two 

triples can be differentiated by timestamps, otherwise they are semantically similar. In 

current implementation of the HRM any value can be used as a timestamp. This 
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implementation required the least amount of effort, but it is not a realistic representation of 

human temporal cognition. Ideally, there should be restrictions on what kind of values can 

be used to represent time. On the one hand, it can be an explicit class instance to represent 

our high level understanding of time and data. On the other hand, timestamp value can be 

more implicit estimations of time intervals done by our internal biological clock. ACT-R 

already provides a temporal module (Taatgen, Van Rijn & Anderson, 2007) that provides 

such time interval estimations. Future updates of the HRM should include more restrictions 

on time values as well as integration with the temporal module.  

Statements 

In the HRM, statement is a type of triple that represents factual knowledge. It is a 

statement of a fact that is true or was true. The example triples from the preceding 

subsection are all valid statements. The HRM provides several ways to create a statement. 

Firstly, a modeler can explicitly define custom statements, as model's background 

knowledge. Secondly, the model itself can create statements in real-time via production rule 

calls to a special reasoner buffer. This option simulates the ability to obtain new explicit 

knowledge through external input, such as stimuli from the outside world. Finally, a model 

can generate a new statement by inferring it from existing statements using top-down 

reasoning, or by deriving it from an implicit connection between concepts using bottom-up 

reasoning. 

Implicit and explicit knowledge 

The HRM makes a distinction between explicit and implicit knowledge. Statements are 

explicit knowledge, a form of a knowledge that is known consciously. Implicit knowledge 

is knowledge that is represented by slot values of concept chunks. Such knowledge is 

implicit because it is assumed that ACT-R is not consciously aware of its presence, but 

subconsciously can extract it to form explicit statements using bottom-up processes. 

Following the previous example, there may not be any statement such as (r-left-of fork 

plate). However, concepts chunks for fork and plate may have slot values with x and y 

coordinates implicitly indicating relative spatial positions of two concepts. Those values 

then can be converted into explicit concepts such as r-left-of when necessary. 

Inference rules 

In the HRM, rules describe how a new statement can be inferred from existing statements. 

The HRM assumes that rules reflect our past experience and are formed as a result of our 

observations of relations among real-world entities such as cause/effect, pre-

condition/action, action/post-condition observations, etc. Rules use special triples called 

rule-statements. Semantically, a rule-statement is not a fact, but either a condition or an 

implication of a possibility. Any rule consists of left- and right-hand sides. A left-hand side 

must have one or more rule-statements (antecedent), and the right hand-side should have 

exactly one rule-statement (consequent). In order for a consequent to be true, all antecedent 

rule-statements should also be true. For example, the rule below states "if the fork is on the 

left of the plate then the plate is on the right of the fork": 

 

(r-left-of fork plate) ==> (r-right-of plate fork) 

 

Unlike ordinary statements, rule-statements can use variables as one of the entities in the 

triple. The previous example rule can be rewritten as: 
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(r-left-of "@item" plate) ==> (r-right-of plate "@item") 

 

Above rule states "if any item is on the left of the plate then plate is on the right of that 

item". In this rule, "@item" is a variable, not a concept. The HRM recognizes as a variable 

any string value that starts with "@". It can be replaced by any valid concept that is 

factually on the left side of the plate. Variables provide a possibility to generalize rules 

beyond a scope of a particular concept or even an entire model. It also introduces a 

possibility to reuse the same rules across different ACT-R models, at least partially, 

addressing one of the major reusability challenges in ACT-R. 

Assertion 

Assertion is another type of triple used by the HRM. Assertion represents a query 

questioning the HRM whether a triple is true. For example, the assertion (r-right-of plate 

fork) represents the query: "Is the plate on the right side of the fork?" Similar to rule-

statements, assertions can have variables. The assertion (r-right-of plate "@item") asks the 

HRM to find any class instance that is on the right side of the plate. In ACT-R, the HRM 

can be queried with an assertion via reasoner buffer. Upon receiving an assertion, the HRM 

starts a reasoning process called a backward reasoning pipeline. The task of reasoning 

pipeline is to check if assertion can be proven to be true or to find/prove any statement that 

matches the assertion if assertion contains variables. If assertion is true then it is converted 

into a statement and placed inside reasoner buffer. If a matching statement is found then 

that statement is put inside reasoner buffer. 

Schema and inference types 

Conditional proof schema 

The HRM uses the same conditional proof schema defined by Braine & O'Brien (1991): 

to derive or evaluate if p then q, first suppose p; when q follows from the supposition of p 

together with other information assumed, one may assert if p then q. This schema together 

with the open world assumption has several implications that make the HRM's inference 

different from an inference based on material conditionals of a classical logic: 

1. The HRM does not follow the closed world assumption unless it is explicitly required. 

Therefore, what the HRM cannot prove is not necessarily false. 

2. There can be two or more competing or conflicting inference rules that can be true at 

different instances: e.g. if p then q; if p then k. For example, the agent may build 

following two inference rules through observations of rolling dice: If throw dice then 

get 6; If throw dice then get 3. 

3. The sufficiency requirement will not necessarily hold: the antecedent p is not 

necessarily a sufficient condition for a consequent q because other information may be 

assumed to assert if p then q. Consider following common sense rule: If brakes are 

pressed then car stops. Most of the times, the rule is true. However, there it is assumed 

that, for example, the brakes are not broken.  

4. The validity requirement of deductive reasoning will not necessarily hold: the 

conclusion may not be true even if the premises are true. For example, the HRM may 

fail to assert if p then k because it already asserted if p then q. Consider the dice 

example from the implication 2. If a dice is thrown then the HRM may assume that 

result is 6. The second possible conclusion of 3 remains untrue even though its premise 
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of dice being thrown is true. Furthermore, the validity requirement cannot hold if the 

sufficiency requirement is not met. 

5. The law of contrapositive, or Modus Tollens (if p then q, therefore if ¬q then ¬p), also 

does not necessarily hold. Consider the contrapositive of the example from the 

implication 3: If a car hasn't stopped then the brakes were not pressed. Because of 

violation of the sufficiency requirement, the contrapositive argument may not be true: 

The brakes were pressed, but the car hasn't stopped because the brakes were broken. 

In this case, the assumed information that the brakes are not broken is not true. 

Therefore, the HRM does not automatically generate contrapositives from inference 

rules. The HRM assumes that a contrapositive should be observed and memorized as 

an inference rule of its own right. 

The law of syllogism (if p then q, if q then k, therefore if p then k) is at the center of the 

HRM's capability for complex reasoning. Consider following example: If the sun sets then 

a night comes. If a night comes then a temperature drops. Therefore, if the sun sets then a 

temperature drops. There is no explicit relation between the sun setting and the temperature 

dropping in two rules. However, it can be inferred using of law of syllogism. The ability to 

chain the inference rules together allows the HRM to explore different reasoning strategies 

with the same inference process. 

Reasoning types 

The inference rules can be used for two types of reasoning in the HRM: backward and 

forward. Backward reasoning is used to determine whether a specific conclusion can be 

reached. Forward reasoning is used to determine what kind of conclusion can be reached 

given set of evidences. Backward reasoning retrieves an inference rule by matching its 

consequent, while forward reasoning retrieves the inference rule by matching its 

antecedent. For further explanation, let us assume that there is the following Rule 1: 

 

 
 

With Rule 1, the HRM can answer two types of questions. The first question is "Is car 

speed decreasing?". It is a question answerable by backward reasoning. The HRM's 

equivalent of this question will be an assertion (decrease car speed) sent to a reasoner 

buffer with an expected conclusion that it is true or not true. The assertion will be true if 

there is a rule that (1) has a consequent matching the assertion and (2) has an antecedent 

where all rule-statements are true or inferred to be true via the law of syllogism. In this 

case, the HRM will use the Rule 1 because its consequent matches the assertion. However, 

to infer that the assertion is true the HRM will also have to infer that Rule 1's antecedent is 

also true. We will discuss later various strategies used for such inference. 

The second question is "What happens if the brake is pressed, and it is not broken?". It is 

a question answerable by forward reasoning. The HRM's equivalent of this question will be 

supplying two facts, (have-state brake pressed) and (NOT-have-state brake broken), to the 

reasoner buffer and expecting some or no conclusion. The conclusion will be reached if 

there is a rule that (1) has an antecedent matching the given facts in the reasoner buffer and 

(2) has an antecedent where all rule-statements are true or inferred to be true due the law of 

Interpretation: 

If a brake is pressed, and it is not broken 

then car speed decreases. 

 

Rule 1: 

(have-state brake pressed) 

(NOT-have-state brake broken) 

==> 

(decrease car speed) 
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syllogism. The facts in the reasoner buffer can be used to assert truth-values of the 

antecedent. In this case, the HRM concludes that the car speed should decrease (decrease 

car speed) because of the Rule 1. It is possible to ask another question such as "What 

happens if a brake is pressed?". The HRM's equivalent of this question will be supplying 

only single fact (have-state brake pressed) to a reasoner buffer. However, according to the 

Rule 1, the second fact, (NOT-have-state brake broken), is required to reach a conclusion. 

In such case, the HRM will try to prove the second fact using backward reasoning. 

A reasoning pipeline provides a meta-cognitive control over reasoning processes. The 

HRM uses two reasoning pipelines for backward and forward reasoning respectively. In 

ACT-R, reasoning pipelines are implemented as a series of automated calls to production 

rules built into the HRM. These production rules are task-general reasoning rules and are 

part of the cognitive architecture. This approach differs from traditional ACT-R modeling 

practices that treat all production rules as part of a model. On the other hand, the declarative 

inference rules are often treated (but not necessarily always) as being task-specific. The 

inference rules together with statements of facts provide a problem context within which 

the task-general production rules can reason and derive conclusions. 

Following the threaded cognition theory (Salvucci & Taatgen, 2008, 2011), reasoning 

pipelines are contained within the HRM's own cognitive thread that runs in parallel with 

other (model-specific) cognitive threads. This means that model-specific production rules 

irrelevant to reasoning pipelines can fire in-between production rules belonging to the 

HRM. It opens the possibility that declarative retrievals requested by other threads can 

interfere with the HRM's reasoning that relies heavily on declarative memory. Such 

interference is possible despite the fact that ACT-R locks access to declarative memory 

during individual retrieval instances (it is not possible to recognize a thread that initiated 

retrieval). Therefore, the HRM uses a stricter control that locks declarative memory through 

entirety of the reasoning pipeline. 

Backward reasoning pipeline 

 As it was discussed earlier, new knowledge can be generated from existing knowledge 

using one of several different strategies. The backward reasoning pipeline establishes 

priority among those strategies and organizes them into series of consecutive steps. The 

highest priority strategy receives an assertion first and tries to prove it. If it fails then the 

assertion is passed to the next highest priority strategy. The HRM triggers calls to backward 

reasoning pipeline as soon as it receives an assertion request inside reasoner buffer. The 

backward reasoning pipeline recursively calls itself (the law of syllogism) until either the 

assertion is proven or it is decided that the assertion cannot be proven. 

 

 
 

 Figure 6.3: A simplified workflow of an HRM reasoning pipeline in ACT-R. 
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Currently, backward reasoning pipeline supports three different strategies: bottom-up 

reasoning, declarative retrieval and top-down reasoning. Figure 6.3 shows the prioritization 

of those strategies. Bottom-up reasoning is preferred requiring the least amount of cognitive 

effort. Bottom-up reasoning is followed by declarative retrieval and top-down reasoning in 

decreasing order of priority. 

Bottom-up reasoning 

The current implementation of the HRM's visual bottom-up reasoning supports only 

spatial reasoning. As with other forms of reasoning, spatial reasoning requires a source of 

knowledge based on which it can derive a new knowledge. In the HRM, such knowledge 

source is a visual short-term memory (VSTM). VSTM was introduced by the newer version 

of the Pre-Attentive and Attentive Vision module (Nyamsuren & Taatgen, 2013a), an 

extension to ACT-R's default vision module. VSTM is a high resolution, but low capacity 

visual memory. Every visual object encoded from the external world is temporarily stored 

inside VSTM until it decays out or is deleted due to capacity limitations. Unlike declarative 

memory, VSTM is considered as a visual analog of a working memory. Hence, objects 

inside VSTM can be accessed by the HRM with no cognitive cost, and explicit knowledge 

can be derived with little effort. 

The HRM can take advantage of VSTM whenever it receives an assertion about spatial 

relation between two concepts such as (r-right-of plate fork). VSTM contains detailed 

information about each visual object currently in its store, including the object's original 

position in real world. In ACT-R, those are two-dimensional spatial coordinates. The HRM 

can use such implicit knowledge to quickly derive explicit statements about spatial relations 

between concepts inside VSTM. If one of those derived statements supports the assertion 

then the assertion is proven. 

Declarative retrieval  

If bottom-up reasoning fails then the HRM tries to retrieve from declarative memory any 

statement that can directly confirm the assertion. In ACT-R, a declarative retrieval can be a 

time-costly process. Furthermore, there is a chance that retrieval will fail even if a matching 

statement exists. Those are the reasons why bottom-up reasoning takes priority over 

declarative retrieval as a more reliable and faster process. 

Top-down reasoning 

Top-down reasoning is only invoked if declarative retrieval fails. It involves rule-based 

reasoning where a chain of inference rules is used to prove an assertion. 

The current implementation of the HRM supports a fully functional backward-chaining 

algorithm implemented as a set of ACT-R production rules. The first production retrieves 

from declarative memory any consequent rule-statement that matches the assertion. If the 

retrieval of a rule's consequent is successful then the next production retrieves the first 

antecedent rule-statement of the same rule. The retrieved antecedent rule-statement is 

converted into an assertion and fed back to the HRM. This starts a new recursive call with a 

new reasoning pipeline. If recursive call was able to prove that current antecedent rule-

statement is true then the next antecedent rule-statement is retrieved, converted into 

assertion and fed back to the HRM. This process continues until all antecedent rule-

statements are proven. In such a case, the consequent rule-statement is also true, and, hence, 

the original assertion is true as well. If any of the antecedent rule-statements cannot be 
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proven then the HRM stops the reasoning process and sets the reasoner buffer to an error 

state. 

The top-down reasoning consists of a series of production calls coupled with frequent 

declarative retrievals. Not only it is a hugely time-consuming process, but also it is very 

costly in terms of cognitive resources. Since ACT-R allows only one production call at the 

time, it creates a bottleneck for other task-specific productions. Furthermore, declarative 

memory is locked through entirety of the time the HRM uses it to prove an assertion. 

Hence, other cognitive processes cannot access declarative memory. The overall high cost 

puts top-down reasoning in the lowest priority position. 

Forward reasoning pipeline 

The simplified workflow of a forward reasoning pipeline is shown in Figure 6.4.Given 

statements of facts as a query, the HRM retrieves from declarative memory any rule that 

has antecedent rule-statements matching the statements in the query. A rule selection is 

governed by several criteria. Firstly, a rule must have rule-statements matching all query 

statements. Secondly, the order of rule-statements must be the same as the order of 

corresponding query statements. Thirdly, irrelevant rules that may not lead to a desired 

conclusion can be ignored. One of the unique aspects of human reasoning is that we can do 

it with an intention of achieving a particular conclusion. It is also possible to do the same in 

the HRM. If a target concept is specified in a query then the HRM ignores all rules that do 

not mention that concept in its consequent rule-statements. All three criteria applied to rule 

retrieval are based on principles of memory retrieval during decision-making under 

uncertainty. It was suggested that memory chunks are evaluated during retrieval with 

respect to relevancy, availability and accessibility (Kahnemann, 2003) as well as cross 

compared with alternative retrieval candidates (Schooler & Hertwig, 2005). 

 

 
 

 Figure 6.4: A simplified workflow of a forward reasoning pipeline. 
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If forward reasoning uses a rule that has antecedent rule-statements that were not 

specified in the query then those rule-statements are verified for truthfulness by invoking a 

backward reasoning. As such, forward reasoning is not purely forward and can have series 

of nested backward reasoning calls. This is different from traditional view where backward 

and forward reasoning are considered two distinct processes. The heterogeneous nature of 

the reasoning pipeline significantly increases a range of inference problems that the HRM 

can solve. The power of mixed forward and backward reasoning will be explored via 

example model of blicket categorization task (Griffiths, Sobel, Tenenbaum & Gopnik, 

2011). 

Validation Models 

This section introduces three models of different experimental tasks. Each model is used 

to replicate human behavioral and validated against human performance data.  

The model of a casual deduction task is used to demonstrate the HRM's basic reasoning 

abilities based on inference rules in declarative memory. It is the simplest of the validation 

models described in this study. It uses only declarative knowledge and does not require 

other modules such as vision. The reasoning strategy used by this model is limited to 

declarative retrieval of rules. The model demonstrates how competing and conflicting 

declarative knowledge can affect outcomes of even simple reasoning. It shows the 

importance of considering uncertainty in declarative retrieval results during any logical 

reasoning task.   

The model of a spatial reasoning task demonstrates the full potential of the HRM's 

backward reasoning ability. It uses all three backward reasoning strategies: bottom-up 

reasoning, declarative retrievals and top-down reasoning with recursive calls to the 

backward reasoning pipeline. The reasoning in this model uses knowledge in declarative 

memory as well as in visual short-term memory. 

This final model based on a blicket task is a demonstration of the HRM's ability to use 

both inductive and deductive reasoning approaches to solve problem of inferring cause and 

effect relationship from series of observations. The model mainly uses forward reasoning 

with series of nested calls to backward reasoning. In addition to declarative knowledge, the 

model is presented with new knowledge during the progress of the trial. As such, it is a 

good demonstration of how reasoning outcomes can change based on dynamic events even 

if the underlying set of inference rules remains the same.  

Model of Casual Deduction Task 

Cummins, Lubart, Alksnis and Rist (1991) and Cummins (1995) extensively studied the 

process of casual deduction. Subjects are provided with a sentence describing a cause/effect 

in a form of "If <cause>, then <effect>". The sentence is followed by four different forms 

of arguments: Modus Ponens (MP), Affirming the Consequent (AC), Modus Tollens (MT) 

and Denying the Antecedent (DA). Each argument consists of a fact and an implication. 

Subjects are asked to evaluate how likely it is that the implication is true given a 

cause/effect sentence and the argument's fact. Here is an original example from Cummins et 

al. (1991) of a cause/effect sentence: "If the brake was depressed, then the car slowed 

down." The four arguments with respect to this sentence are: "The brake was depressed. 

Therefore the car slowed down." for MP; "The car slowed down. Therefore the brake was 

pressed." for AC; "The car did not slow down. Therefore, the brake was not depressed." for 

MT; and "The brake was not depressed. Therefore, the car did not slow down." for DA. 
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The study revealed that acceptance of arguments is influenced significantly by subjects' 

previous experience. The casual deduction was sensitive to two factors: alternative causes 

and disabling conditions (Cummins et al., 1991). An alternative cause is a cause that is 

different from one given in a sentence but still can result in the same effect. A disabling 

condition is a condition that prevents the effect from occurring despite the presence of a 

cause. Figure 6.5 shows the acceptance ratings of the four conditions gathered from two 

separate studies. Firstly, there is a robust effect of disabling conditions on acceptance of 

MP and MT arguments. When there are many possible disabling conditions, subjects are 

less likely to accept truthfulness of these two types of arguments. Secondly, there is a 

persistent effect of alternative causes on acceptance of DA and AC arguments. When there 

are many possible alternative causes of the effect, subjects are less likely to accept DA and 

AC arguments. Thirdly, it is not surprising that the acceptance rating varies a lot between 

two studies. The nature of the task is extremely subjective and participants' previous 

experiences vary a lot. It is likely that the rating further depend on the specific materials 

used in two experiments.  

Using an ACT-R model that uses the HRM's knowledge structure, we explore the nature 

of effects invoked by alternative causes and disabling conditions on our ability of casual 

deduction. 

Model's knowledge structure 

In this experiment, the model used the same 16 cause/effect sentences described in 

Cummins (1995). The model stored both affirmative and negatives versions of all 16 

sentences in its declarative memory in form of rules. For example, the previously 

mentioned example cause/effect sentence was converted to the following two rules: 

 

Figure 6.5: Mean acceptance ratings of four argument forms in casual deduction 

experiments conducted in (a) Cummins et al. (1991) and (b) Cummins (1995). 
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Inside declarative memory, the model also had alternative causes and disabling conditions 

for each sentence. They were also stored in form of rules. Here is an example of affirmative 

and negative rules for an alternative cause: 

 

 
 

An affirmative version of the same disabling condition can be written as two following 

rule forms: 

  

 
 

Both forms were stored in declarative memory. Finally, an example of a negative version 

of a disabling condition would be as following: 

 

 
 

Sentences were divided into four groups. In Many/Many group, a sentence had three 

disabling conditions and three alternative causes. In Many/Few group, there were three 

disabling conditions and one alternative cause. Similarly, the other two groups were 

Few/Many and Few/Few. 

Model's reasoning strategy 

With each sentence, the model had to do four trials, one for each argument form. The 

model's general strategy was simple: given an argument, retrieve any matching rule from 

declarative memory and verify if the rule supports the argument. The workflow of the 

strategy is shown in Figure 6.6. Depending on the argument form, the model used different 

forms of reasoning. For MP arguments, the model did forward reasoning with fact. It 

retrieved any rule that had antecedent rule-statement matching the fact and checked if 

retrieved rule's consequent matched the implication. If a match was found, then the 

argument was accepted. For AC arguments, the model did backward reasoning with fact: it 

retrieved any rule that had consequent matching the fact and checked if any of the 

Rule 7: 

(have-state brake pressed) 

(NOT-have-state brake broken) 

==> 

(decrease car speed) 

 

Rule 5: 

(have-state brake pressed) 

(have-state brake broken) 

==> 

(NOT-decrease car speed) 

 

Rule 6: 

(have-state brake pressed) 

(NOT-decrease car speed) 

==> 

(have-state brake broken) 

 

Rule 3: 

(have-state car go-uphill) 

==> 

 (decrease car speed) 

Rule 4: 

(NOT-decrease car speed t) 

 ==> 

 (NOT-have-state car go-uphill) 

Rule 1: 

(have-state brake pressed) 

==> 

(decrease car speed) 

 

Rule 2: 

(NOT-decrease car speed) 

==>  

(NOT-have-state brake pressed) 
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antecedent rule-statements matched the implication. If match was found then argument was 

accepted. In a similar manner, the model did forward reasoning with fact for MT arguments 

and forward reasoning with implication for DA arguments. 

 

 

Results 

The model repeated the same experiment 50 times, accounting to a total of 3200 trials. 

Figure 6.7 shows proportions of trials where arguments were accepted. The proportions 

were calculated separately for each combination of four argument forms and sentence 

groups. The model shows the same behavior as human subjects. The model is more likely 

to accept MP and MT arguments for cause/effect rules that have few disabling conditions. 

Next, the model is more likely to accept DA and AC arguments for cause/effect rules that 

have few alternative causes. 

The effects are explained by a mutual interference among rules during the step when the 

model tries to retrieve a proper rule that can support an argument. For example, let us 

assume that the model received following MP argument: 

 

Fact: (have-state brake pressed) 

Implication: (decrease car speed) 

 

 Figure 6.6: A workflow of the strategy used by the model of the Casual 

Deduction task. 
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In this scenario, the model will use the fact (have-state brake pressed) to retrieve any rule 

with matching antecedent rule-statement. These include not only the original cause/effect 

rule 1, but also the affirmative and negative disabling condition rules 5, 6 and 7. In presence 

of several matching chunks during a declarative retrieval, ACT-R randomly picks one. The 

rules 5 and 6 have consequents that are different from the argument's implication. 

Therefore, if either rule 5 or 6 is retrieved then the model will not accept the argument's 

implication. It is quite easy to see that as the number of disabling conditions increases, the 

model will be less likely to retrieve a rule that supports the argument and, hence, more 

likely to reject it. This rule interference mechanism is also responsible for the effects 

observed in other three argument forms. 

 

 
 

One aspect that should be considered is that the rules have the same activation values in 

the model. Hence, the rules have the same probability of retrieval. This is an unlikely 

scenario with human subjects. Firstly, an activation value for the same rule may differ 

between subjects. Secondly, different rules may have different activation values within a 

subject. For example, despite leading to the same conclusion, rule 7 is likely to have less 

activation than rule 1 because people do not worry often about state of the brakes. Use of 

equal activation values for all rules may have affected model fit. The model's acceptance 

rate of AC arguments is a bit higher than subjects' rate. Assigning lower activation values to 

negative versions of disabling conditions, such as rule 7, can decrease the acceptance rate 

of AC arguments and result in better fit. However, the current simpler version of the model 

serves better for the purpose of demonstrating the HRM's basic reasoning capabilities. 

It is certainly possible that other computational models can explain the same effects. 

However, in case of our model the main explanatory power comes not from the model built 

for this specific task, but rather from the aspects of the cognitive architecture: a 

combination of ACT-R's activation-based declarative memory and the HRM's conditional 

proof schema (Braine & O'Brien, 1991). 

Model of Spatial Relations Task 

This task is used to study people's fundamental ability to derive a spatial relation from a 

set of premises. Three problems below are examples of such task. In each problem, subjects 

are given four premises and then queried about the spatial relation between two items that 

were not explicitly connected in any of the premises. 

 Figure 6.7: Proportions of arguments accepted by the model in four forms of 

arguments. 
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The studies showed that people prefer to use strategy of mental states rather than formal 

representations (Byrne & Johnson-Laird, 1989). In such strategy, people build mental states 

or imagery using abstract objects representing items in the premises.  Such mental state is 

built iteratively as premises are processed one by one (Carreiras & Santamaria, 1997). With 

such mental states, the spatial relation between two query items can be derived directly. 

Examples of mental states are shown below. Problem 1 results in one mental state. 

Problems 2 and 3 result in two possible mental states. Furthermore, the same studies have 

shown that one-state problems are easier than two-state problems. 

 

 
 

 
 

 
 

Byrne and Johnson-Laird (1989) reported 61% and 50% correct responses in one- and 

two-state problems respectively. Similarly, Carreiras and Santamaria (1997) reported 99% 

and 89% correct responses in one- and two-state problems. There are also two-state 

problems that have no valid conclusion. In those problems, mental states resulted in 

contradicting relations between two query items, and subjects were required to report that 

there is no single solution. For example, Problem 3 results in two possible mental states 

contradicting each other. Problems with no valid conclusion result in the lowest proportion 

of correct responses. Two separate experiments by Byrne and Johnson-Laird resulted in 

18% and 15% of correct responses in problems with no valid conclusions. 

It is assumed that a two-state problem is more difficult because it requires higher working 

memory load than a one-state problem. However, it does not explain why accuracy drops 

even lower in a two-state problem with no valid conclusion. Both types of two-state 

problems have equal numbers of mental states, premises and items. Furthermore, both types 

of problems require two swaps to derive the second mental state from the first one. 

Therefore, the working memory load should be the same in both types of problems. As 

result, an explanation based on a working memory load is not sufficient to explain subjects' 

Problem 3: 

1. B is on the right of A 

2. C is on the left of B 

3. D is below C 

4. E is below A 

What is the relation between D and E?  

 

Possible mental states: 

C A B               A C B 

D E                  E D 

Problem 2: 

1. B is on the right of A 

2. C is on the left of B 

3. D is below C 

4. E is below B 

What is the relation between D and E? 

Possible mental states: 

C A B               A C B 

D    E                   D E 

Problem 1: 

1. A is on the right of B 

2. C is on the left of B 

3. D is below C 

4. E is below B 

What is the relation between D and E? 

Possible mental state: 

C B A 

D E 
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performance. Our ACT-R model that uses the HRM module provides a possible 

explanation for this effect. 

Model's design 

The model's strategy can be divided into five steps: 

1. The model constructs a mental state of the problem inside VSTM. The mental state is 

built iteratively by processing premises one at a time and updating VSTM on each iteration. 

Items from a premise are converted into abstract visual objects and given (x, y) coordinates 

based on positions relative to the items already existing inside VSTM. A premise is also 

converted into a logical statement stored inside declarative memory, but it is done only after 

VSTM is updated (Figure 6.8a). The model can handle two-state problems. For example, 

while processing the second premise in Problem 2, the model uses assertion (r-dir-left-of 

"@item" B) to check if there is already another item present to left of B. This assertion 

triggers bottom-up spatial reasoning and the HRM returns any visual object that is to the 

left of B. In case of Problem 2, A is returned. Then the model stores both C and A inside its 

working memory as items to be swapped positions in a second mental state (Figure 6.8b). 

In Problem 2, the mental state inside VSTM will be as following at the end of step 1: 

 
2. After all premises are processed and a mental state is built inside VSTM, the model 

sends an assertion to the HRM to try to answer a query. The assertion is in form of 

("@property" D E). To answer the assertion, the HRM uses bottom-up spatial reasoning to 

evaluate relative positions of D and E inside VSTM. In case of Problem 2, the model's 

answer will be either (r-left-of D E) or (r-dir-left-of D E). 

 

 
 

3. If it is a one-state problem then the model does nothing else. However, if there are two 

possible mental states then, after answering the query and storing it in declarative memory, 

the model creates the second possible mental state inside VSTM. This is done by swapping 

positions of the two objects previously stored inside working memory. In case of Problem 

2, C is placed at the position of A, and A is placed at the former position of C changing the 

mental state inside VSTM into following: 

 

A C B 

D    E 

 Figure 6.8: Two diagrams are describing how the model processes the first (a) 

and the second (b) premises of the Problem 2 during step 1 of the strategy. 

Premise:

(r-right-of B A)

Update VSTM

VSTM

A B

Update DM

DM

(r-right-of B A)

Premise:

(r-left-of C B)

Update VSTM

VSTM

C A B

Update DM

DM

(r-right-of B A)
(r-left-of C B)

Is assertion

(r-dir-left-of “@item” B)

true?

Yes: (r-dir-left-of A B) Memorize
conflict

WM

Conflict: True
Item 1: A
Item 2: C

Is assertion

(r-dir-left-of “@item” B)

true?

No

(a)

WM - Working Memory

VSTM - Visual Short-Term Memory

DM - Declarative Memory

(b)

C A B 

D    E 



Chapter 6 | 117 

4. At this step, the model checks if any visual object was positioned relative to the 

swapped objects. If that is the case then the model verifies if relations still hold, if not then 

positions of those objects are corrected as well. 

5. After creating the second mental state, the model sends to the HRM the same assertion 

as in step 2. The answer for this assertion is compared to the answer from step 2 that is 

retrieved from declarative memory. If answers are not the same then the model assumes 

that problem does not have valid conclusion and reports the inconsistency. 

Results 

Model's proportions of correct responses in one-state problems, two-state problems with 

valid conclusion and two-state problems with no valid conclusion are 100%, 74% and 31% 

respectively. The model always gives correct answers in one-state problems. However, it 

starts making mistakes in two-state problems. Furthermore, the model shows lowest 

accuracy in two-state problems with no valid conclusion. The cause of mistakes is model's 

confusion between similar spatial properties such as r-below and r-dir-below.  

The first mistake can be made during step 4. Consider following example from Problem 3 

where the model just finished step 3 by swapping positions of A and C: 

 

 
 

During step 4, the model has to verify whether the spatial relation between D and C still 

holds. One of two possible assertions can be used for such verification: (r-below D C) or (r-

dir-below D C). The model's choice is random in this case. However, if r-below is used 

then the assertion will be evaluated to be true since bottom-up reasoning with r-below does 

not check for vertical alignment. This leads the model to a wrong conclusion that D's 

position does not need to be corrected. Such mistake can lead to a situation where, for 

example, in Problem 3, the relation between D and E is still the same in both mental states. 

The second mistake can be made during comparison in step 5. Let us consider the case 

where, in Problem 2, the answers to the assertions in step 2 and 5 were (r-left-of D E) and 

(r-dir-left-of D E) respectively. These two statements, although similar, are not the same. 

Hence, if no explicit top-down reasoning is used to prove that one entails the other, the two 

answers are considered different. The model decides randomly whether to invoke top-down 

verification since it is not always necessary. 

The model makes more mistakes in two-state problems with no valid conclusion because 

it is vulnerable to both types of mistakes in those problems. However, only second mistake 

is possible in two-state problems with valid conclusion. In one-state problems, the model is 

not susceptible to any of those mistakes. 

Model of Bayesian-like Inference in Blicket Task 

We focused on a simulation of the first experiment conducted by Griffiths et al. (2011). 

The task context consists of ordinary pencils (blocks) and super pencils (blickets). We 

further refer to ordinary and super pencils as blocks and blickets. Subjects were asked to 

rate on a scale of 1-7 how likely a block was to be a blicket. Subjects' ratings were based on 

observations that consisted of one or two blocks placed on a special detector. The detector 

activated when at least one blicket was placed on it. Griffiths et al. used this task to study 

C A B 

D E 

 

A C B 

D E 

 

==> 
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people's ability to infer casual relations based on number of observations and prior 

knowledge. 

The experiment consisted of three consecutive phases: a training phase, AB-event phase 

and A-event phase. Subjects were divided into five groups that received different trainings 

during the first phase. During the training, each subject was shown ten blocks placed 

individually on the detector one after another. Some blocks activated the detector (Figure 

6.9a) others did not (Figure 6.9b). A subject's group determined the frequency of blickets 

among the ten blocks. In group 1/6, only one of ten blocks was a blicket. In group 1/3, three 

of ten were blickets. Similarly, subjects in groups 1/2, 2/3 and 5/6 observed five, seven and 

nine blickets respectively. 

After the training phase, the subjects were shown two new blocks, A and B. At this point, 

subjects were asked to provide initial ratings of how likely each was to be a blicket. 

Following the initial ratings, both A and B blocks were simultaneously placed on the 

detector causing it to detect a blicket (Figure 6.9c). This phase is referred to as AB-event. 

After AB-event, subjects were asked to rate both blocks again. Finally, block A was placed 

alone on the detector activating it (Figure 6.9d). This phase is referred to as A-event. 

Subjects were asked to rate A and B blocks after A-event as well. 

 

 
 

Before conducting the experiment, Griffiths at al. (2011) created a Bayesian model 

predicting the probabilities of objects A and B being rated as blickets. Figure 6.10a shows 

those predictions for all five groups. According to the model predictions, the initial ratings 

reflect prior probabilities of encountering a blicket established by a training phase. Those 

ratings are higher in groups that observe a higher number of blickets during the training 

phase. After AB-event, the mean ratings increase above baseline level. However, such 

increase gets smaller as baseline prior probability gets higher. After A-event, the object A is 

given a maximum rating. However, the rating of object B goes down. As shown in Figure 

6.10b, subjects' mean ratings closely follow predicted Bayesian probabilities. 

Model's knowledge structure 

In addition to the basic set of concepts describing elements of the task, the model started 

with a core set of inference rules that are used to reason based on both previous experience 

and real-time evidence. Those rules are described on Table 6.1. 

Rules 0 and 1 reflect the commonly reported simple inductive strategy of solving a 

problem by analogy (Gentner, Holyoak, & Kokinov, 2001; Winston, 1980). Analogies are 

the basis for any integrated cognitive systems (Gust, Krumnack, Kühnberger, & Schwering, 

 Figure 6.9: A blicket activates the detector during the training phase. (b) The 

detector remains inactive when ordinary block is placed on it during the training 

phase. (c) Two blocks, A and B, are placed on the detector activating it during 

AB-event. (a) During A-event, only block A is placed on the detector activating 

it. 

(c) AB-event (d) A-event(a) Training - Blicket block (b) Training - Ordinary block
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2008). Therefore, it is reasonable to assume that subjects have rules to classify blocks by 

analogy given uncertainty. 

Rules 2-7 reflect the task structure and instructions subjects receive during the 

introduction to the experiment. Subjects were given demonstrations of blocks and blickets 

and their interactions with the detector. Subjects were shown cases with one and two blocks 

blocks placed on the detector simultaneously. The demonstrations were given to ensure that 

subjects clearly understood the activation laws. Rules 2 and 3 reflect laws of activation 

when only one block is placed on the detector. Rules 4-7 reflect laws of activation when 

two blocks are placed on the detector at the same time. 

Rule 8 is based on a backward blocking paradigm (Chapman, 1991; Miller & Matute, 

1996; Shanks, 1985). When subjects are shown two cues (A and B) occurring with an 

outcome, subjects associate both cues with the outcome. Next, if subjects are shown only 

one of those cues (A) occurring with the outcome then subjects associate only the latter cue 

(A) with the outcome. The diminished association between the second cue (B) and the 

outcome in light of latter evidence is backward blocking effect. Furthermore, Sobel, 

Tenenbaum and Gopnik (2004) found that the degree of cue-outcome association in 

backward blocking is affected by the base rates of blickets.  Similarly, Rule 8 considers the 

order of evidence and base rate of blickets to re-evaluate chances of a block being a blicket. 

 

 
 

 

 Figure 6.10: (a) Probability predictions of the Bayesian model created by 

Griffiths et al. (2011). (b) Human mean ratings of A and B pencils at initial 

stage, after AB  event and after A events. (c) Probabilities produced by our 

ACT-R model. 
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Table 6.1: Core set of rules used by the model to categorize A and B blocks. 

 
Rules Descriptions 

Rule 0: 

(have-role"@block1" "@role" (ts "base")) 

==> 

(have-role "@block2" "@role" (ts "init")) 

If a block on the antecedent has some 

category then assign the same category 

to the block in the consequent. 

Rule 1: 

(have-role "@block" "@role" (ts "@t1")) 

==> 

(have-role "@block" "@role" (ts "@t2")) 

If a block had some category at some 

time t1 then it has the same category at 

some time t2. 

Rule 2: 

(alone-on "@block" Detector (ts "@t1")) 

(have-state Detector Active (ts "@t1")) 

==> 

(have-role "@block" Blicket) 

If a block is alone on the active Detector 

then it is a blicket. 

Rule 3: 

(alone-on "@block" Detector (ts "@t1")) 

(have-state Detector Inactive (ts "@t1")) 

==> 

(have-role "@block" NON-Blicket) 

If a block is alone on the inactive 

Detector then it is not a blicket. 

Rule 4: 

(on "@block1" Detector (ts "@t1")) 

(on "@block2" Detector (ts "@t1")) 

(have-state Detector Active (ts "@t1")) 

==> 

(have-role "@block1" Blicket) 

If, at the same time, two blocks are on 

the active Detector then the first block is 

a blicket. Rule 5 is similar to Rule 4, but 

concludes that the second block is a 

blicket. 

Rule 6: 

(on "@block1" Detector (ts "@t1")) 

(on "@block2" Detector (ts "@t1")) 

(have-state Detector Active (ts "@t1")) 

(have-role "@block1" Blicket (ts "@t1")) 

==> 

(have-role "@block2" NON-Blicket) 

If, at the same time, two blocks are on 

the active Detector, and one of the 

blocks is a blicket then the other block 

is not a blicket. The Rule 7 is similar to 

Rule 6, but concludes that the first block 

is not a blicket. 

Rule 8: 

(alone-on "@block1" Detector (ts "@t1")) 

(have-state Detector Active (ts "@t1")) 

(on "@block1" Detector (ts "@t2")) 

(on "@block2" Detector (ts "@t2")) 

(have-state Detector Active (ts "@t2")) 

(have-role "@block2" NON-Blicket) 

==> 

(have-role "@block2" NON-Blicket) 

If there are two possible blocks that can 

activate Detector, and one was observed 

to activate the Detector alone, and the 

other one is likely not to be a blicket 

then the latter is not a blicket. 

 

Model's overall strategy 

The overall strategy consists of two major steps. The first step is evaluating presented 

evidence. This step is done every time the model is presented with one or more blocks 

placed on the detector. The model categorizes each block based on the detector's state and 

prior knowledge. Such evidence evaluation is done via forward reasoning using rules on 

Table 6.1. The resulting categorizations of blocks are stored in model's declarative memory.  
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The second step is a query response. When a query asking to categorize a block is 

received, the model tries to retrieve from declarative memory the recent categorization of 

the queried block. If the retrieval is successful then the retrieved categorization is reported. 

Otherwise, the model uses an analogy-based induction to decide block's category. The 

model retrieves another block that was already categorized and assigns its category to the 

queried block. The second step was implemented as two sequential backward reasoning 

calls for retrieval and analogy-based induction respectively. 

Model's strategy for training phase 

During the training phase, ten blocks are sequentially presented to the model. For 

example, the evidence presented to the model for the first block is: 

 

(alone-on Block1 Detector (ts "base")) 

(have-state Detector Active (ts "base")) 

 

The model uses forward reasoning to evaluate evidence and categorize ten blocks. Only 

Rules 2 and 3 are used because those rules always provided the best match to the presented 

evidence. The resulting categorization stored in the model's declarative memory can be as 

following: (have-role Block1 Blicket (ts "base")). The two rules represent typical 

instructions human subjects would receive during the task. 

Next, the model receives an initial request to categorize A and B blocks. Since the model 

has no existing categorization of the two blocks in its declarative memory, it has to use 

analogy-based induction to categorize each block. A backward reasoning with an example 

assertion (have-role BlockA "@role" (ts "init")) invokes Rule 0 from Table 6.1. Antecedent 

from Rule 0 triggers retrieval of any category statement belonging to one of ten blocks 

categorized during the training phase. Because all ten blocks have equal probabilities of 

retrieval, the probability of block A being categorized as blicket is equal to a prior 

probability of blickets established during the training phase. For example, if the model 

retrieves (have-role Block2 NON-Blicket (ts "base")) then block A will be also categorized 

as non blicket: (have-role BlockA NON-Blicket (ts "init")). 

Model's strategy for AB-event 

The evidence for AB-event is presented to the model as: 

 

(on BlockA Detector (ts "AB")) 

(on BlockB Detector (ts "AB")) 

(have-state Detector Active (ts "AB")) 

 

The order of the first two statements in the evidence is random. Given such evidence, the 

model uses a forward reasoning to categorize both A and B blocks during AB-event. Rules 

4-7 have equal match to provided evidence.  Rules 4 and 5 result in a block being 

categorized as blicket, while Rules 6 and 7 can result in a negative categorization. Four 

rules allow the model to guess based on the notion that at least one of the blocks should be 

a blicket without excluding the probability that the other one may not be a blicket. Because  

of Rules 6 and 7, positive categorization for one block can result in negative categorization 

of another block. 

After evidence evaluation, the model is queried about A and B. The models reports with 

categories it has inferred during AB-event. The model may fail to categorize a block if 
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either Rule 6 or 7 is used and the model does not have any fact supporting the last 

antecedent rule-statement (have-role "@block1" Blicket (ts "@t1")). In such cases the 

model reports category inferred during the training phase. This analogy-based induction is 

governed by Rule 1 and allows the model to fall back to prior decision if it is confused by 

ambiguous evidence such as in AB-event. 

Model's strategy for A-event 

The evidence for A-event is presented to the model as: 

 

(alone-on BlockA Detector (ts "A")) 

(have-state Detector Active (ts "A")) 

 

Given this evidence, the model again has to infer the categories for A and B. Inferring A's 

category is straightforward since Rule 2 is always the best match to infer A's category given 

the evidence above. Correspondingly, block A is always categorized as blicket. 

Inferring B's category is trickier since above evidence does not provide any information 

about B. The model uses Rule 8 to infer B's updated category. This rule was introduced to 

the model based on the effect of backward blocking. Backward blocking is observed in a 

task with two potential causes (A and B). It was found that subjects who observe that A 

alone can cause the outcome are less likely to accept B as a second cause than subjects that 

only observed A and B causing the outcome together (Shanks, 1985). Rule 8 allows the 

model to backward block B if it was previously observed together with A. According to the 

rule, if at any time B was categorized as non-blicket then that decision will be reinforced 

given the positive evidence about A. 

Model results 

The model repeated the experiment 50 times. Proportions of times the model reported A 

and B as blickets are shown in Figure 6.10c. The model's good fit supports the hypothesis 

that the casual learning in blicket tasks is not simply associative (Griffiths et al., 2011). 

Furthermore, our model provides a detailed account of underlying cognitive processes 

happening in human brain. The original Bayesian model by Griffiths et al. lacks such 

explanatory power. In addition to reflecting a knowledge structure required for the task, 

rules also govern how the knowledge should be evaluated and updated. 

The most intriguing aspect of our model is its ability to simulate Bayesian-like inference 

despite using an inherently deterministic rule-based inference. Just like the Bayesian model, 

our model is able to incorporate not only the immediate knowledge, but also prior 

knowledge that is being constantly updated throughout the task. Such behavior is facilitated 

by the fact that outcome of new inference is dependent on outcome of the previous 

inference. Furthermore, there are multiple competing rules that can be used for the same 

inference, and probabilistic nature of DM's retrieval is the defining factor over which rule is 

chosen. 

Discussion and Conclusion 

In this study we have proposed a computational module of human reasoning system 

called the HRM. We have also described three models of different reasoning tasks. These 

models tested and validated individual cognitive functionalities of the HRM based on a fit 

to human data.  
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The model of spatial relations task shows an in depth view of how rule- and mental 

model-based reasoning strategies are used together in the same task. It is imperative for 

success that both strategies complement each other. The core of model-based reasoning is 

bottom-up reasoning, an ability to derive explicit knowledge from an implicit knowledge. 

Although fast and efficient, bottom-up reasoning has limitations on the complexity of 

semantics it can operate. Those limitations make the model-based reasoning prone to 

mistakes if not corrected by rule-based reasoning. On the other hand, top-down rule-based 

reasoning is a slow and costly process not feasible for real-time interactive tasks. It has to 

rely on a model-based reasoning to speed up the reasoning process. When a reasoning 

pipeline recursively calls itself, it blurs the boundary between rule- and model-based 

strategies since both of them may be used during the same reasoning process. 

The first casual deduction model is a demonstration of how a triple-based knowledge 

structure can help to explain how complex background knowledge can influence an 

outcome of even simple deductive reasoning. As such, it is no longer a deductive reasoning, 

but rather a pragmatic reasoning, a reasoning based on both a given propositional form and 

its content, previous knowledge (Braine & O'Brien, 1991). It is interesting to see a rise of 

the pragmatic reasoning in the HRM since it does not incorporate any dedicated controls for 

it. The very dependency of the HRM's deductive reasoning on ACT-R's declarative 

mechanisms gives rise to a quite natural pragmatic reasoning. As such, there is a possibility 

that a pragmatic reasoning is not a different logical process, but a deductive reasoning 

bound by properties and limitations of our long-term declarative memory. 

The model of blicket task further extends the notion of pragmatic reasoning and steps into 

a territory of Bayesian probabilistic inference. The model's good fit challenges the 

traditional view of vertical division between deterministic and probabilistic inferences of 

human reasoning. Instead, the model shows that given an inconsistent nature of human 

memory and uncertainty of its recall the deterministic inference can become probabilistic. 

One of the unexpected outcomes of this study is a seamless unification of similarity- and 

rule-based reasoning within the HRM. Earlier studies suggested that both rule- and 

similarity-based processing may emerge from application of a single learning rule (Pothos, 

2005; Verguts & Fias, 2009). In the blicket model, Rules 0 and 1 are used for similarity-

based reasoning while others are rules defined by the task. Both types of rules are handled 

by the HRM's reasoning pipelines, and transition from one form of reasoning to another is 

seamless and on-demand. 

The eventual goal of developing Human Reasoning Module is to create a unified theory 

of human reasoning and a practical tool for simulating it. As such, the HRM was designed 

to be general and task-independent. It is not constrained to specific formal system of logic. 

These properties make the HRM potentially suitable for modeling wide variety of tasks. 

However, the same properties raise concerns whether the module can reliably simulate 

human behavior in specific reasoning tasks. We tried to mitigate those concerns by 

modeling three different tasks that address human reasoning from very different 

perspectives.  

We are still in the process of elaborating what the unified model of human reasoning 

should be. However, the HRM is promising to be a step in the right direction. Figure 6.11 

shows the six forms of reasoning used by the three models. The first dimension unifies two 

popular theories of mental logic and mental models. The HRM assumes that a mental 

model is a form of working memory, Visual Short Term Memory, which has the capability 

to extract basic semantic relations from its content using fast and efficient bottom-up 
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cognitive processes. Then, these semantic relations can be used by mental logic to perform 

more complex semantic processing. Therefore, the HRM argues that human reasoning is 

not strictly top-down and can rely on subconscious bottom-up processes to evaluate 

semantic relations. The second dimension unifies probabilistic inductive reasoning and 

deterministic deductive reasoning. The HRM suggests that the human general reasoning 

skill is likely to be inherently probabilistic and inductive due to stochastic nature of 

knowledge access and retrieval. However, deterministic deductive reasoning is still possible 

when knowledge-related uncertainty is minimized. Ideally, deductive reasoning is an 

instance of inductive reasoning with zero uncertainty. Therefore, the amount of uncertainty 

is the common dimension that unifies inductive and deductive reasoning. Furthermore, a 

degree of uncertainty may be one of the main factors defining reasoning strategy. Inductive 

reasoning can be viewed as an instance of probabilistic reasoning with a strong prior toward 

a particular conclusion. Probabilistic reasoning is inference based on significant past 

experiences defined by strengths of cause/effect, pre-condition/action, action/post-condition 

observations. Inference without prior knowledge about the given instance is either 

reasoning by analogy or simply guessing. In the HRM, reasoning by analogy is still done 

via rule-based reasoning. This unification of similarity-based and rule-based reasoning is 

the final dimension depicted in Figure 6.11. 

 

 
 

Many open questions still remain. One of them is still how inference rules are 

constructed. For example, verbal instructions given to subjects in blicket task should be 

somehow translated into set of rules shown in Table 6.1. On the one hand, it is possible that 

we have set of general rules that serve as templates and are translated into task specific 

forms. On the other hand, there might be set of meta-rules similar to schema that govern 

how inference rules should be constructed based on the perceived information. 

The source code and related data for the HRM module and validation models can be 

downloaded from here: http://www.ai.rug.nl/~n_egii/models/. The current implementation 

of the HRM is in the prototype phase, and its features may change with future revisions.  

 Figure 6.11: Current forms of reasoning that were used by three models based 

on HRM. 
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Abstract 

This study focuses on subjects' performance and strategies in the board game 

called Qwirkle. Earlier scientific studies mostly used Qwirkle as a tool for 

improving mathematical reasoning skills in children. However, Qwirkle may 

additionally require significant visuo-spatial processing. Results from our study 

indicate that subjects use a simple local maximum strategy in which scores at 

local decision points of the game are maximized. As was expected, the strategy 

requires mathematical reasoning skills. However, results also suggest that 

subjects' performance is significantly affected by visual search skills. We 

conclude that the visual and reasoning systems are deeply intertwined. On the 

one hand, the reasoning outcome is highly dependent on both attentive and pre-

attentive visual knowledge. On the other hand, visual processing requires 

capability of reasoning on concepts more higher level than visual features. 
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Introduction 

In the previous chapters, we have tackled two major issues that commonly occur in 

complex problem solving tasks. The first is the role of our visual system as a major source 

of real-time information (Nyamsuren & Taatgen, 2013a, 2013b, 2013c). The result of this 

research was the Pre-Attentive and Attentive Vision module (Nyamsuren & Taatgen, 

2013a). The second is task-general declarative and procedural knowledge that enables us to 

reason and understand how specific problems should be approached and solved. The result 

of this study was the Human Reasoning Module (Nyamsuren & Taatgen, 2013d). 

As was mentioned in Chapter 1, isolated understanding of human reasoning and human 

vision is not enough to understand the cognitive underpinning of human problem solving. 

For a complete picture, we should also understand how reasoning and visual systems 

interplay in a single coherent cognitive architecture. We have yet to draw a bridge between 

PAAV and the HRM that allows full interaction between the two modules. The model of 

spatial reasoning task (Nyamsuren & Taatgen, 2013a; Byrne & Johnson-Laird, 1989) 

described in Chapter 6 only scratched the surface of necessary cognitive functionalities 

connecting the two systems. Therefore, additional investigation based on a more complex 

task is required. 

Qwirkle 

We have chosen the board game of Qwirkle4 as a representative of a problem solving task 

that requires both complex visual processing and reasoning. Qwirkle is a competitive game 

that requires at least two and at most four players. It is a game based on tiles. Each tile has a 

shape of a certain color. There are six unique colors and six unique shapes resulting in 36 

unique tiles shown in Figure 7.1. In total, there are 108 tiles with three copies of each 

unique tile. Tiles are usually kept in a bag so they are not visible to players. 

 

 
 

The game starts with each player drawing six random tiles from the bag. Next, another 

three tiles are drawn randomly and put on the center of the board face up next to each other. 

None of the players can see the other players' tiles. Players make moves in turns. During 

her turn, a player can perform either one of two actions: put one or more tiles with the same 

color or shape on the board, or replace one or more tiles from her stack with random tiles 

                                                            
4 Qwirkle is a game by MindWare (www.mindware.com). 

Figure 7.1: 36 unique tiles of Qwirkle. 
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from the bag. The replaced tiles are put back into a bag. After putting tiles on a board, a 

player replenishes her six-tile stack with new tiles randomly picked from a bag. It is not 

necessary for a player to put all tiles in the same row or column. Instead, individual tiles 

can be put in places where they fit best. There are two main rules governing where a tile 

can be put. First, a tile should be put next to another tile that is already on the board. 

Second, any sequence of tiles on the board should have either the same color and different 

shapes or different colors and the same shape. The longest possible sequence consists of six 

tiles and is referred to as a qwirkle. 

 

 
 

A player receives points for each tile put on a board. A player who puts the final tile of a 

qwirkle receives 12 points (Figure 7.2a), the maximum amount of points possible to get 

from a single tile sequence. Otherwise, scoring is based on the length of the sequences a 

new tile forms. For example, forming a sequence with two tiles results in two points (Figure 

7.2b). If a newly put tile forms a horizontal sequence with three tiles and a vertical 

sequence with four tiles then the move results in seven points (Figure 7.2c). 

The game ends if a player puts her last tile on a board and there are no more tiles in the 

bag to replenish from. A player who finishes the game first receives bonus six points. The 

player with the highest amount of points is the winner of the game. A single-player version5 

of the game can be found at www.ai.rug.nl/~n_egii/qwirkle/. 

What makes Qwirkle interesting? 

Qwirkle requires a significant degree of reasoning skills including mathematical problem-

solving skills and the ability to consider alternative options. In fact, Qwirkle has been used 

to improve mathematical problem solving skills in schoolchildren (Klanderman, Moore, 

Maxwell, & Robbert, 2013; Maloy, Edwards, & Anderson, 2010). Furthermore, Mackey, 

Hill, Stone and Bunge (2011) argued that computerized and non-computerized reasoning 

games, with Qwirkle among them, improve children's fluid reasoning, the capacity to think 

logically and solve problems in novel situations (Cattell, 1987; Horn & Cattell, 1967). 

Although not widely recognized in previously mentioned studies, Qwirkle has a significant 

visual component in it. On the one hand, it requires visuo-spatial reasoning. In fact, Mackey 

et al. also found that subjects playing Qwirkle along with other games significantly 

improved their spatial working memory. On the other hand, Qwirkle requires basic 

processes of visual feature-based search. This dual nature of Qwirkle that involves both the 

                                                            
5 The online and experiment versions of the Qwirkle game were developed and used under the terms of fair use for 

non-profit educational purpose only.  

Figure 7.2: Scoring rules in Qwirkle. 
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reasoning and visual systems makes the game an ideal candidate for investigating how both 

processes work together in single task. 

Objectives 

The purpose of this study is to investigate the form of a strategy the players use in 

Qwirkle. Revealing the strategy is crucial for detailed understanding of the types of 

cognitive processes involved in the game. The overall strategy can be divided into 

individual steps, and each step can be assigned into specific cognitive resources. In this 

way, it is possible to investigate the specific roles the reasoning and visual systems play in 

Qwirkle. Furthermore, it should give an insight into the interplay between these two 

systems. 

Experiment 

Subjects 

In total, 17 subjects participated in the experiment. Results from three subjects were 

excluded from the analysis due to technical errors and the high amount of noise in the eye 

tracking data. The average age of the subjects was 22 (SD = 3.29). There were six female 

and eight male subjects. 

Design and procedure 

Each subject was required to play ten games against a single computer opponent. The 

computer opponent had the simple strategy of maximizing its score for each turn. In each 

turn, the computer opponent would consider all possible unique combinations out of six (or 

less) tiles it has in its stack. For each combination of tiles, the computer opponent found a 

combination of positions on the board that resulted in maximum amount of points. Finally, 

the combination of tiles and corresponding combination of positions on the board that gave 

the maximum possible number of points for the turn were chosen as the computer's move 

for the turn. Computer opponent did not plan ahead or consider subject's moves. Hence, it is 

not the optimal strategy for the game. Subjects were not informed about the strategy used 

by the computer opponent. 

The experiment was divided into two blocks of five games each: a hint block and a no-

hint block. In the hint block, the subject received hints at the start of each of her turns. A 

hint consisted of one of the six tiles in the subject's stack being highlighted with a red 

frame. The hint indicated that the tile belongs to a combination of one or more tiles that 

results in the highest possible score for the turn. Subjects were given instructions about the 

meaning of the hint. Subjects were also explicitly told that they were free to ignore the hint 

and pursue their own strategy. Half of the subjects started the experiment with a hint block 

while the other half started with a no-hint block. Hints served as a good reference point to 

deduce the strategy if subjects chose to use it. 

A single game can last for quite a long time, especially if there are only two players. 

Therefore, any single game used only 54 tiles instead of 108 tiles. All 54 tiles were chosen 

randomly for each game. In addition, subjects were limited to 90 seconds to make moves in 

each turn. Figure 7.3 shows the example screen capture of the game during an experiment. 

The game board had a size of 15×15 cells. All games started with subjects' making the first 

moves. 
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All subjects were requested to read the game instructions and play an online version of it 

prior coming to the experiment. The online version of Qwirkle was similar to the version 

used in the experiment except having no computer opponent. At the beginning of the 

experiment, an experimenter again explained the instructions to the subject. Subjects also 

had an opportunity to play two practice games: one with and one without hint. Results from 

practice trials were not included in the analysis.  

 

 

Eye tracking 

An EyeLink 1000 eye tracker was used for recording the eye movements. It is a desktop-

mounted remote eye tracker with monocular sampling rate of 500 Hz and a spatial 

resolution of <0.01° RMS. The card images were shown on a 20-inch LCD monitor with 

screen size of 1,024×768 pixels and screen resolution of 64 pixels/inch. Subjects were 

asked to use a chin-rest to fix the head position during a recording. The tile image had a 

size of 50×50 pixels, or 1.62º×1.62º in angular size. The image of a shape within a tile 

fitted inside a square of 15×15 pixels, or 0.49º×0.49º in angular size. Angular sizes were 

calculated based on a viewing distance of 70 cm. The gaze position was calculated using 

the eye’s corneal reflection captured using an infrared camera compensated for head 

movements. The eye tracker’s default parameters were used to convert gaze positions into 

fixations and saccades. The calibration of an eye tracker was performed at the start and 

during the experiment, if necessary. A calibration accuracy of 0.8° was considered as an 

acceptable measure. Before each game, subjects were asked to do a drift correction as an 

additional corrective measure. 

Action log and questionnaire 

The progress of each game was recorded in a log file. The log file contained information 

about every action (placing a tile on the board or replacing a tile) performed by both the 

subject and the computer opponent. The log file contained sufficient information to restore 

any player's state or board state at any time during the game. At the end of the experiment, 

Figure 7.3: Example screen capture of Qwirkle game during an experiment. 



Chapter 7 | 131 

subjects were asked to fill in short questionnaire. Subjects were requested to provide 

information about their expertise level and previous experience with Qwirkle. They were 

also asked a few specific questions regarding the strategy such as preference toward any 

attribute, predicting opponent's moves or planning several turns ahead. 

Experiment results 

According to the questionnaires, none of the subjects had previous experience of playing 

Qwirkle prior to registering for the experiment. However, all subjects played the online 

version of the game prior coming to the experiment.  

Attribute preference 

In our previous studies with the card game of SET (Nyamsuren & Taatgen, 2013b), we 

have found that players had a preference for the color attribute over any other attribute such 

as shape. Surprisingly, we were not able to find any evidence of attribute preference in 

Qwirkle. We have tested whether subjects used combinations of tiles with the same color 

more than combinations of tiles with the same shape and vice versa. The usage did not 

significantly differ from one another. The statistical results also match with answers 

provided in the questionnaires. Eight subjects reported absence of preference toward either 

color or shape. Three subjects reported preference toward color, and another three subjects 

reported preference toward shape. In overall, there is no overall preference either toward 

color or shape. 

Subjects' scores 

Figure 7.4 shows subjects' performance in terms of proportions of games won and total 

amount of points gathered during an experiment. Subjects were sorted in increasing order 

of their total scores. Three subjects who won 50% of games each showed the highest 

performance. Two subjects who won only 10% of games each showed the lowest 

performance. There is a strong correlation between number of games won and total points 

gathered, r(12) = 0.64, p = 0.014. Increasing a score is not the only possible strategy in 

Qwirkle and does not necessarily guarantee a victory. For example, 43% of subjects 

reported in the questionnaire that they tried to block the opponent from completing the 

qwirkle. Similarly, 57% of subjects reported that they would be hesitant to put a fifth tile in 

a sequence without having a sixth tile because the opponent may put the final tile in the 

next turn. These strategies are highly situational, but still may affect the outcome of a game. 

Furthermore, a high score does not guarantee a victory, since it is always relative to the 

opponent's score. Nevertheless, the significant correlation suggests that gathering more 

points improves the chance of winning the game. Further in this work, we will treat the 

total score as a main indicator of subjects' performance. 

If players were at least as good as the computer opponent then the success rate should be 

around chance probability of 50%. However, subjects had a relatively low success rate with 

on average three wins out of ten games. This result already indicates that subjects either 

used a strategy that is inferior to the one used by the computer opponent or used the same 

strategy but failed on some of the steps during the implementation. The second option is 

more likely considering that the computer opponent used a very simple strategy. It is not 

feasible to simplify the strategy even further unless subjects were making completely 

random moves. 
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One way repeated measures ANOVA applied to subjects' final scores shows no 

significant performance differences between the Hint and No-hint conditions F(1, 13) < 1. 

It is not surprising considering that scores gathered in individual games can differ 

significantly for the same subject. Analyses based on higher-granularity data described in 

following sessions show that there is indeed a difference between two conditions. 

Figure 7.5 shows the mean scores gathered by subjects during individual turns in the Hint 

and No-hint conditions. In the figure, subjects were again sorted in increasing order of their 

total scores. The figure shows that there is a significant difference between subjects with 

low- and high- performance in No-hint condition. High performance subjects were able to 

gather at least two more points per turn than low performance subjects. Subjects' mean turn 

scores in No-hint condition significantly correlate with subjects' total scores, r(12) = 0.87, p 

< 0.001. 

 

 
 

Figure 7.5: Mean number of points gathered by each subject in an individual 

turn in Hint and No-hint conditions. Subjects were sorted in ascending order of 

their total points. 
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Figure 7.4: Proportions of wins and total number of points gathered by each 

subject during ten games. 
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Next, Figure 7.5 shows that providing a hint helped the subjects to increase turn scores. 

As a result, the difference between low and high performance subjects is less prominent in 

Hint condition than in No-hint condition. It is supported by insignificant correlation 

between subjects' mean turn scores in Hint condition and total scores, r(12) = 0.47, p = 0.1. 

This result suggests that both low- and high performance subjects may have been using the 

same strategy. Low performance subjects may have been more prone to making mistakes 

while implementing the strategy. However, providing hints may have helped them to 

decreases chances of mistakes. There is no significant effect of Hint and No-hint order on 

mean turn scores. Neither is there a significant effect of the order on subjects' average trial 

score. 

Finally, given opportunities such as hints, subjects chose to maximize their turn scores. 

This fact suggests that subjects may have been using the same strategy as the computer 

opponent: maximize points gathered in each turn. The next section investigates further to 

confirm this assumption. 

Subjects' moves 

Previously, we have suggested that subjects used the same strategy as the computer 

opponent. The core of the strategy is to find an optimal combination of moves that results in 

the highest possible score for the turn. It is essentially a local maximum strategy because it 

tries to maximize local reward at individual turns rather than a global reward from a 

sequence of turns. If subjects indeed used the local maximum strategy then proportions of 

turns with the highest possible scores obtained should increase as subjects' total scores 

increase. Secondly, the same proportions should be higher in the Hint condition than in the 

No-hint condition. Those proportions were calculated for each subject and separately for 

Hint and No-hint conditions. The results are shown in Figure 7.6a. The data on the figure 

confirms that both previous assumptions are true. 

 

 
 

Figure 7.6: (a) Proportions of turns where subjects got highest possible scores. 

(b) Proportions of turns where subjects used tiles provided as hints in their 

moves and proportions of turns where subjects were able to get maximum scores 

while using the hinted tile. 
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Firstly, subjects with higher total scores were more successful at getting highest possible 

turn scores. However, correlation between subjects' proportions in Hint condition and total 

scores is not significant, r(12) = 0.53, p = 0.053. On the other hand, there is a significant 

correlation between proportions in No-hint condition and total scores, r(12) = 0.74, p = 

0.003. Results of correlation tests again suggest that low and high performance subjects 

differ mostly in No-hint condition while presence of the hint helps to negate skill 

differences among subjects. 

 Secondly, proportions are generally higher in the Hint condition than in the No-hint 

condition. On average, subjects were able to find the optimal combinations in 56% (SE = 

3%) of the turns in Hint condition compared to 45% (SE = 3%) in No-hint condition. This 

difference is significant according to one-way repeated measures ANOVA, F(1, 13) = 

11.28, p = 0.005. 

Because subjects were explicitly told that they can ignore hints, it is possible that subjects 

chose to do so most of the times. This could explain why subjects have relatively low 

success rate even in Hint condition. Figure 7.6b shows how often subjects used the hinted 

tile. The figure shows that subjects have chosen to use the hinted tile, on average, in 90% 

(SE = 2%) of the turns where hint was provided. However, the figure also shows that the 

success rate of obtaining the maximum turn score is still much lower (M = 55%, SE = 3%) 

even when the hint was used. It is likely that subjects often failed during one of the two 

steps described previously. The test of correlation between total scores and proportions of 

hint usage is not significant, r(12) = -0.18, p = 0.54. The insignificant correlation test 

indicates that usage of a hint by itself does not guarantee success in the getting the 

maximum turn score. 

There is again no effect of the order of blocks on subjects' performance (Figure 7.7). 

Firstly, there is an overall learning effect from the first block to the second block. The 

learning effect is independent of order of two conditions. Secondly, subjects perform better 

at getting the highest score when a hint is given. The positive effect of the hint is quite 

significant. For example, the group of subjects who started with a Hint condition show 

lower performance in the second block with No-hint condition. Even the learning effect is 

not enough to compensate for the absence of a hint. 

 

 

 

 

Figure 7.7: Effects of block order and trial type on proportions of turns where 

subjects got highest possible scores. 
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The local maximum strategy 

The analyses from the last two sections support our hypothesis that subjects used the 

strategy of maximizing their turn scores. It is a simple strategy that can be described in two 

steps: 

1. Identify an optimal combination of tiles that is likely to result in the highest possible 

score. 

2. Identify an optimal combination of board positions for a chosen combination of tiles 

that is likely to result in the highest possible score. 

Despite the simplicity, subjects were prone to making mistakes that prevented them from 

getting the maximum score as suggested by the low success rate in Figure 7.6a. Figure 7.6b 

leads us to conclude that, even given a hint, subjects still may fail to find a proper 

combination of tiles or a proper combination of board positions to put those tiles. 

Optimal combination of tiles 

To find out how often subjects failed during the first step, we have calculated the 

proportions of turns where subjects used a combination of tiles that could have resulted in 

the maximum possible points for that turn (it does not necessarily mean that subjects 

actually got maximum points). 

Figure 7.8a shows that subjects were extremely good at finding a combination of tiles that 

could have resulted in the highest possible score for the turn. Whenever subjects used the 

hinted tiles, they were able to find the proper combination of tiles in 90% (SE = 2%) of the 

turns on average (the blue line in Figure 7.8a). Furthermore, even if no hint was provided or 

subjects chose to ignore the hint, subjects were able to find alternative combo that could 

have resulted in the highest possible score in 75% (SE = 2%) of all turns (the black line in 

Figure 7.8a). 

 

 
 

If the same proportions are calculated using only those turns where subjects failed to get 

maximum possible score then the proportions are still quite high (Figure 7.8b).  The 

Figure 7.8:  Proportions of turns where subjects were able to find the 

combinations of tiles that could have resulted in the highest possible turn scores. 

The proportions were calculated from (a) all turns and (b) only from those turns 

where subjects failed to get the maximum possible score. 
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average proportions are 74% (SE = 4%) and 49% (SE = 3%) in turns where hint was used 

and turns where hint was ignored or not provided at all. 

None of the proportions shown in Figure 7.8 significantly correlated with subjects' total 

scores. It suggests that failures in the step 1 of the strategy cannot fully account for the 

performance differences among subjects. Furthermore, Figure 7.8b suggests that at least 

49% - 74% of all failures to get maximum possible turn score should be due to the failure in 

the second steps of the strategy. Subjects do pick the right combinations of tiles, but not 

necessarily put them on the optimal spots on the board. 

Optimal combination of board positions 

Previous analyses suggest that an important process defining a subject's performance is 

how well she can find an optimal combination of board position that maximizes the number 

of gathered points. If this proposition is true then a subject with a lower total score should 

fail more than a subject with a higher total score during step 2 of the strategy. This can 

easily be tested by calculating the proportions of turns where subjects were able to find 

optimal board positions for the combination of tiles they have chosen in each turn. Figure 

7.9 shows those proportions calculated for each subject. On average, subjects succeeded in 

finding an optimal combination of board positions in 67% (SE = 3%) of turns. The 

proportions are strongly correlated with subjects' total scores, r(12) = 0.65, p = 0.01. The 

significant correlation suggests that the ability to find an optimal combination of board 

positions is a strong indicative of subjects' performances. 

 

 

Discussion 

The earlier study involving Qwirkle (Mackey et al., 2011) focused on children of ages 5 

to 9. Children in Mackey's study still exhibited significant improvements in general 

reasoning skills and spatial working memory. The result suggests that the strategy should 

be simple and intuitive enough to be used by children and yet sophisticated enough to 

involve cognitive resources ranging from vision to general problem solving. The local 

maximum strategy suggested by results of our study matches this profile. It is simple but 

Figure 7.9: Proportions of turns where subjects were able to find optimal 

combinations of board positions that lead to the highest possible scores for a 

chosen combination of tiles. 
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reasonably effective strategy. More importantly, the successful use of this strategy is 

equally dependent on reasoning skills and visuo-spatial processing skills. This dependency 

explains why Mackey et al. observed improvement in spatial working memory of subjects. 

Our results suggest that the reasoning skills play an important role during the first step of 

the strategy: identifying the combination of tiles with the highest potential score. However, 

it remains unclear how subjects decided which combination of tiles to choose. Ideally, it is 

possible to exhaustively search through all possible combinations of tiles and board 

positions, the same way the computer opponent does. However, it is highly unlikely that 

human subjects use exhaustive search due to time and cost inefficiency. It is more likely 

that subjects employ some form of probabilistic mechanism of making a near-optimal 

decision under uncertainty (Doya, 2008). Such stochastic mechanism could involve 

calculating a likelihood of obtaining the highest score given combination of tiles and 

current board state. Correspondingly, distribution and frequency of color and shape features 

on the board may affect the likelihood estimation. It was already shown in chapters 2 and 4 

that frequency of both attentively and pre-attentively processed visual features can affect 

decision making (Nyamsuren & Taatgen, 2013b, 2013c).  If it is indeed the case then it will 

be a direct evidence of visual system directly interfering with reasoning processes. It is also 

likely that the size of the tile combination plays an important role. More tiles are associated 

with a higher score. However, bigger tile combination also increases the effort required to 

find the optimal combination of cells. These and other factors (Busemeyer & Townsend, 

1993), such as time pressure, are likely to be considered by subjects in calculating the 

likelihood of getting highest possible score. 

The visuo-spatial processing skills are important during the second step of the strategy. 

Finding an optimal combination of positions is basically a problem of visual search with 

multiple targets and multiple partially matching distracters (Anderson, Fincham, Schneider, 

& Yang, 2012; Hong & Drury, 2002; Horowitz & Wofle, 2001). Targets are the board 

positions with the highest scores, and distracters are the positions with lower scores. 

Multiple-target visual search is a demanding process that requires combination of visual 

feature matching, spatial memory and higher-level mathematical reasoning. In addition to 

matching visual features, subjects need mathematical reasoning to compare gains across 

alternative board positions. As such, it seems that visual search is not purely visual and 

higher-level reasoning is invoked within its context. It is an opposite form of interaction 

between visual and reasoning systems than the one may be used during the choice of tile 

combination. Finally, given the complexity of such visual search it is not surprising that 

subjects fail often during this step. It also explains why subjects are not as good as the 

computer opponent despite the simplicity of the common strategy. The computer opponent 

does the perfect visual search. 

If we take an overall view of the subjects' strategy in light of the earlier discussion then it 

is not as simple as having two steps, one with reasoning and one with visual search. Instead, 

it seems that the visual and reasoning systems are deeply intertwined. On the one hand, 

reasoning outcome is highly dependent on both attentive and pre-attentive visual 

knowledge. On the other hand, visual processing requires capability of reasoning on 

concepts more higher level than visual features. 

Conclusion 

In this chapter, we have described the preliminary study of human behavior and strategy 

in Qwirkle.  The next step is to create a cognitive model that can (1) provide empirical 



138 | Qwirkle: From fluid reasoning to visual search 

 

 

validations of the assumptions and hypothesis proposed here, and (2) test whether our 

explanation is compatible with wider theory of human cognition through the use of ACT-R 

cognitive architecture (Anderson, 2007).  

This study suggests that three types of cognitive resources are most important for this 

modeling effort. Firstly, declarative memory is necessary to store task specific and general 

knowledge and rules. Next, the study emphasizes the importance of a visual system as a 

medium of gathering and processing real-time knowledge. Considering the complexity of 

the required visual processing the use of the Pre-Attentive and Attentive Vision module 

(Nyamsuren & Taatgen, 2013a) is required to gain access to such cognitive resources as 

iconic memory and short-term visual memory. The final type of cognitive resources is fluid 

reasoning that is capable of integrating declarative and visual knowledge to solve the 

problem of playing the game. Catell (1987) proposed that fluid reasoning serves as a 

scaffold that allows us to form and acquire new cognitive skills and knowledge. Halford, 

Wilson and Phillips (1998) proposed relational integration of fluid reasoning, the ability to 

jointly consider distinct relationships between stimuli. The Human Reasoning Module 

(Nyamsuren & Taatgen, 2013d) was developed with the same principle in mind as fluid 

reasoning. The HRM can serve as a scaffold for deriving new knowledge by combining 

existing knowledge in the declarative and visual systems.  

We have not really touched upon subjects' eye-movement data in this chapter. The future 

plans definitely include paying more attention to eye-movement data, especially as a means 

of estimating the cognitive model's fit to subjects' behavior. 
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Summary 

The Human Reasoning Module and the Pre-Attentive and Attentive Vision module are 

both theory and tool. 

PAAV significantly extends the ACT-R's canonical vision module. PAAV's 

implementation is based on a theory of sequential attention shifts guided by low-level 

information pre-attentively captured via parallel visual processes. Parallel processes do not 

have infinite capacity and are limited by acuity properties of different visual feature 

dimensions. PAAV supports a more sophisticated attentional guidance that includes both 

bottom-up and top-down components. Bottom-up guidance is governed by inherent salient 

properties of a scene rather than explicit criteria provided in an attention shift request. 

Similarly, top-down guidance is integrated into an overall saliency map rather than being 

treated as a separate attentional guidance system. PAAV further integrates top-down and 

bottom-up processes by proposing an implicit activation network between visual and 

declarative memories. These improvements enable ACT-R to model tasks ranging from 

canonical visual search to complex problem solving tasks where real-time visual 

information is essential part of decision-making. 

The motivations for developing the HRM module are more complicated than those behind 

PAAV. On the one hand, the HRM was written to extend theory and functionality of 

existing modules. Firstly, it seeks to explain how single architecture can exhibit several 

different forms of reasoning ranging from strictly classical logics to pragmatic reasoning, 

from induction to deduction, and from deterministic reasoning to scholastic Bayesian 

reasoning. It is an ambitious goal that requires further research beyond ones described in 

this dissertation. On the other hand, the HRM was written to add constraints to current 

modeling practices. Unrestricted definition of chunk types and production rules are the two 

major issues currently plaguing the ACT-R modeling community. Among the negative 

consequences of this practice is a hindered reusability of models that makes it unnecessarily 

difficult to check consistency among related cognitive theories or falsify incorrect ones 

among competing theories. The HRM proposes a very specific construct of knowledge 

organization on top of chunk-based format and set of production rules that can be used in a 

wide range of tasks. By proposing standardized task-general production rules, the HRM 

makes a good trade-off between a constraint-free architecture and an architecture that is 

functionally crippled by too restrictive constraints. 

Myths of Cognitive Modeling 

In the following sections, I would like to address, firstly, some of the criticisms given 

toward cognitive modeling and, secondly, some of the open questions and issues that 

should be resolved in the roadmap toward the unified theory of human mind. 

86 bn parameters for 86 bn neurons? 

A common criticism applied toward cognitive architectures is that they do not provide 

sufficient restrictions on the possible parameter space. The criticism applies to the HRM 

(Chapter 6) and PAAV (Chapter 4) as these two modules add additional sets of parameters 

to the architecture.  

Definitely, a model of a specific task can have one too many parameters. However, can 

we apply the same logic when it comes to a cognitive architecture that is designed to 
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simulate something as complex as human brain? According to the recent estimate, a human 

brain consists of 86 billion neurons (Azevedo, Carvalho, Grinberg, Farfel, Ferretti, Leite, 

Jacob-Filho, Lent, Herculano-Houzel, 2009). Does that mean that we need 86 billion 

parameters in the cognitive architecture? It is a rhetorical question given to emphasize the 

vast complexity of a human brain. Furthermore, the estimation above does not include non-

neuronal cells that account for another 84 billion cells. According to embodied cognition 

(Ballard, Hayhoe, Pook, & Rao, 1997; Clark, 1997), the human mind is not only a product 

of the brain, but of a physical body as well. Correspondingly, how many additional 

parameters are required to account for the motor system, the human eye, etc.? The human 

mind is by far the most complex computational system we are familiar with. One can fit 

several different models to explain human behavior in a distinct task. However, I challenge 

anyone to propose a complete cognitive theory of human mind that is too general and has 

too many parameters. 

Finding a unified theory of the human mind is not the same problem as finding an optimal 

solution with a minimal set of parameters. The two problems are totally different in both 

scale and purpose. The latter one is an optimization problem in a system with clearly 

defined properties and constraints (Boyd & Vandenberghe, 2004). The former one is an 

exploratory research where we are still trying to define properties and constraints of the 

human cognitive system. Therefore, having a cognitive architecture with a wide parameter 

space and many alternative models of the same task is not an issue in itself. Competing 

models can be falsified and the parameter space can be narrowed down, as more evidence is 

uncovered. Such an approach is certainly easier than trying to revise an entire cognitive 

architecture upon realization that it was too simplified or restricted to be able to handle 

tasks more complex than the ones the architecture was originally designed for. The real 

issue arises when the cognitive architecture remains static even in light of new evidence. 

The next section elaborates more on this problem. 

So how many parameters is enough? I do not think anyone can put forward even an 

approximate number, but ACT-R certainly does not have enough parameters to be able to 

fully simulate a human mind. 

Breaking the seal on ACT-R 

My argument in the preceding section is based on the very important assumption that the 

cognitive architecture is revised and refined over time as more knowledge about human 

mind is uncovered. Unfortunately, the assumption does not hold. The Figure 8.1 shows the 

timeline of ACT-R releases. The last one was in 2005 with the release of ACT-R 6.0. Since 

then there have been small changes to various components of ACT-R. However, it has been 

more than eight year without any new major release. 

 

 
 

There are several issues directly connected with the lack of advancements in development 

of cognitive architecture. I have mentioned one of them in Chapter 1. In today's studies, the 

cognitive modeling efforts are limited to models of individual tasks or groups of similar 

tasks (Busemeyer & Diederich, 2010; Farkaš, 2012). The cognitive architectures are treated 

Figure 8.1: Timeline of ACT-R releases. 
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as a modeling tools rather than theories of human cognition. As such, there is little 

incentive for researchers to contribute to the architecture itself. ACT-R is both a theory and 

a tool, and as any theory it should be refined, expanded and corrected when necessary. 

Next, there is a certain resistance to making changes to cognitive architectures. It is 

caused by two issues. Firstly, it is an assumption that architecture should remain static and 

fixed (Newell, 1990). It is indeed a very important criterion for creating plausible and 

consistent models. However, the assumption applies only when the architecture provides all 

necessary and sufficient constituent components (Goertz & Starr, 2003; Mackie, 1965) of 

the system it represent. It is not even remotely true for cognitive architectures: the 

requirement of sufficiency is not fulfilled. There is no rational basis for claiming 

plausibility and consistency of models without meeting architectural requirements. 

Secondly, there is a certain misunderstanding of a structure of cognitive architecture, at 

least in case of ACT-R. One of the peer-reviewers of the article about Human Reasoning 

Module (Chapter 6; Nyamsuren & Taatgen, 2013) was concerned about proliferation of 

modules in ACT-R architecture. Modules in ACT-R serve two purposes. Firstly, modules 

represent specific regions of human brain that are responsible for particular types of 

cognitive processes such as declarative memory, visual processing, motor control, etc. 

(Anderson, 2007; Borst & Anderson, 2013; Borst, Taatgen, & Van Rijn, 2011). The core 

modules of ACT-R, such as Declarative and Vision, are examples of modules that represent 

distinct parts of a brain. On the other hand, new modules are convenient tools for expanding 

the functionalities of already existing modules. The Pre-Attentive and Attentive Vision 

module (Chapter 3) expands ACT-R's default vision module. The Human Reasoning 

Module expands (Chapter 6) ACT-R's procedural and declarative modules. Proliferation of 

modules that claim new types of cognitive processes should be perceived with caution. 

However, we very much need proliferation of modules that expand and improve existing 

ones. 

Exploratory experiments, confirmatory models and explanatory 

architectures 

This dissertation is an attempt to have a balanced approach to the study of human 

cognition. On the one end of the scale, we need exploratory experiments to propose new 

psychological theories or to draw a connection between existing ones. On the other end of 

the scale, we need cognitive modeling for two major purposes: empirically confirm 

proposed theories and advance the understanding of the human mind as a single unified 

architecture. 

Exploratory experiments 

A study of SET described in Chapter 2 is a perfect example of an exploratory experiment 

that not only tries to explain human behavior in a particular task, but also seeks to connect 

separate theories of cognition. Firstly, it emphasized importance of bottom-up visual 

processes in decision-making. What we see influences our decision at a subconscious level. 

As a result, we have proposed a theory of implicit connection between declarative and 

visual memories. It is a connection based on activations spread among similar items in two 

memories. Later in Chapter 4, the theory helped to explain an interesting phenomenon of 

scene perception in extremely short durations of time. The study in Chapter 5 further 
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emphases the influence of visual processes in problem-solving tasks to the extent that such 

influence can affect subjects' behavior and performance. 

Secondly, the SET study reveals that the line between top-down and bottom-up cognitive 

processes is not as clear-cut as it is perceived to be. Novice players prefer perceptual 

similarity while skilled players prefer top-down rules. There is reasoning at two levels: 

visual and declarative. Reasoning at the visual level is fast, but ultimately limited to 

similarity-based comparisons. Reasoning at the declarative level is slow, but powerful 

enough to consider distinct relationships between different elements via inference rules in 

declarative memory. These finding later become part of initial set of theories upon which 

PAAV (Chapter 4) and the HRM (Chapter 6) are built. The experiment based on Qwirkle 

(Chapter 7) provides further insight into the interplay between our reasoning and visual 

systems. It is peculiar that visual search skill is a factor that defines subject's performance 

in the task traditionally viewed as a mathematical reasoning task. Is it possible that the 

visual system is much smarter than we suspect it to be? Can we attribute to the visual 

system the ability to process information on a semantic level, such as basic numerical 

reasoning? It is a "rebellious thought" from a perspective of classical logical reasoning. 

However, if it is true then there is no such thing as top-down reasoning. There may not be 

two separate systems such as System 1 and System 2. Instead, the single reasoning system 

may operate directly on knowledge forms at both top-down and bottom-up layers. 

Confirmatory models 

In addition to box-and-arrow models, a special emphasis was put on the necessity of 

empirical validations of the cognitive theories using computational models. Computational 

models are necessary because of several reasons. Firstly, box-and-arrow models may fail to 

consider obscure but important aspects of the experimental tasks may have significant 

effect on long run. Secondly, subjects in tasks close to real-world problems often exhibit 

complex non-linear behaviors. Solutions for such problems cannot be found via 

mathematical or analytical means. 

 

 
 

The necessity to consider the above two points can be visually demonstrated by taking the 

example of a quadratic polynomial system such as Z3[\ = Z38 + @. It is the equation for the 

Mandelbrot set, the first fractal extensively studied in mathematics using computer 

simulations. On the surface, the equation is very simple. However, it has a non-linear and 

Figure 8.2: Visualization of the Mandelbrot set as a fractal shape with its 

amazing self-similarity: if magnified at the boundaries then smaller versions of 

the shape can be found at the arbitrarily small scales. 
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recursive nature that makes exploring the dynamics of the system over many recursions an 

extremely challenging task. The variables in the equation are complex numbers, and the 

Mandelbrot set is a plot in the plane of the complex parameter c. As a result, it generates an 

extremely complex geometrical structure show in Figure 8.2. No box-and-arrow model will 

be able to describe the dynamics of the Mandelbrot set. In fact, mathematics itself was not 

an optimal tool for exploring it, and only advent of computer visualization allowed 

mathematicians to comprehend the complexity of the Mandelbrot set. The human mind 

shares many properties with fractals and other complex systems6. The mind is non-linear, 

recursive and stochastic. Similar to the case of the Mandelbrot set, it is highly unlikely that 

we will be able to understand true dynamics of human mind even in simplest tasks without 

computer modeling. 

The competitive parallelism of bottom-up similarity-based comparison and top-down 

rule-based comparison described in Chapter 2 is a complex dynamic process. It is difficult 

to account for the evolution of declarative activations that are responsible for the transition 

from one form of comparison to another using only a box-and-arrow model. Confirmation 

that such cognitive process indeed can explain differences between novice and expert 

players requires empirical evidence from a computational model. The same argument 

applies to models of Most Abundant Value task in Chapter 4 and effects of visual 

presentation styles on SET performance described in Chapter 5. Perhaps, it is possible to 

construct a box-and-arrow model of the domino effect described in Chapter 5 where 

changes in one cognitive process start a chain of changes in other processes. However, no 

box-and-arrow model or mathematical analytical solution can predict the eye movements. 

Roberts (1993) suggested that two theories of human reasoning, the mental models and 

mental logics, are not mutually exclusive. However plausible his theory is, there is a lack of 

explanation how exactly the two theories should merge and interplay. The spatial reasoning 

model described in Chapter 6 provided an empirical confirmation that the two theories can 

coexist in a single reasoning system. The model is not concrete evidence that two forms of 

reasoning indeed coexist in human reasoning system. However, the model provides the 

confirmation that coexistence is possible. Confirmation of possibility or impossibility of 

proposed cognitive theories within constraints of cognitive architectures is the value of 

cognitive models that is often overseen. 

Explanatory architectures 

Ideally, any computational model should rely solely on the cognitive architecture to 

provide sufficient functionality to simulate cognitive processes. In practice however, the 

modelers more often than not have to write custom pieces of code as an attachment to the 

model to mitigate limitations of the architecture. This practice has significant drawbacks. 

The custom code is neither part of the model or architecture. At least in ACT-R, the 

important constraints of the architecture do not apply to the custom code. Absence of 

constraints raises the concern of plausibility of the custom code as well as the cognitive 

theory behind it. As a result, the more custom code there is the less feasible the model 

becomes. It is an import issue that should be addressed. 

For the reason described above, we have adopted an approach separating the experimental 

task into task-specific and task-general components. The task-general components were 

                                                            
6 Although never mentioned by neuroscientists, neurons in a brain are organized into a fractal structure 

(Fernandez, Bolea, Ortega, & Louis, 1999; Kiselev, Hahn, & Auer, 2003). 
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modeled as validated extensions to the architecture, fully applying any of its constraints. 

Task-specific components were addressed by cognitive models. Such an approach 

minimizes the amount of custom code that needs to be written and has a positive 

contribution to the development of the architecture. Furthermore, the major explanatory 

power of task-general elements comes from the cognitive architecture rather than custom 

code or task-specific model. 

Perhaps the best example of this approach is the models of picture and word SET 

described in Chapter 5. The two models are essentially the same. They differ only in the set 

of meta-cognitive production rules that are responsible for handling different presentations 

styles in the two types of SET. However, the two models show radically different behavior. 

This difference is accounted for by the PAAV module (Chapter 3), more specifically by its 

visual acuity mechanisms and iconic memory. This kind of cross validation add additional 

layer of feasibility to the models and underlying psychological theories. Such modeling 

would have been impossible with ACT-R default vision module. PAAV's explanatory 

power was supported by other studies as well: the task of decision-making based on scene 

gist perception (Chapter 4) and three types of visual search (Chapter 3).  

Although not as extensively tested as the PAAV module, the Human Reasoning Module 

is also promising to be in right direction toward explaining task-general reasoning 

capabilities. The module provides its own set of task-general production rules for 

reasoning. All three models described in Chapter 6 use this same set of production rules. It 

saves the modeler time that would have been spent writing reasoning production rules for 

individual models. More importantly, it also provides a single vocabulary among different 

models again shifting explanatory power from models to the architecture. 

Are we there yet? 

This research started with an optimistic question of how we can model a believable 

computer opponent in games. This is the last section of this dissertation, and, naturally, a 

question arises: Are we done yet? Can we finally build a believable computer opponent? In 

the simplest case, a believable model should produce a data that is literally 

indistinguishable from human data even for an expert eye. We are not there yet. We have 

only scratched the surface of human cognition necessary to play even the simpler computer 

games. The model of SET initially introduced in Chapter 2 was revised in Chapter 4. An 

entire vision module was developed to support the model. However, it is still a largely 

simplification of human behavior in SET. For example, the current SET model treats 

working memory (WM) as a problem state. Is it a realistic implementation of WM? What if 

there is no single cohesive WM, but rather a collection of memories highly specialized for 

specific categories of tasks. How various proposed forms of working memories, such as 

visual short-term memory, spatial memory, mental models and problems state, fit together 

in a single system? On the other hand, I haven't even begun to explore complex low-level 

visual processing such as contour recognition or Gestalt principles that allow grouping of 

shapes into a single image of a card.  

These and other issues are difficult research questions that need to be answered through a 

long-term methodological research. The key for eventually achieving the original goal of 

this research is continuous refinement and improvement of cognitive theories as well as 

cognitive modeling tools. Chapter 7 described theoretical findings from Qwirkle 

experiment. Modeling efforts are on the agenda of future work. During such efforts, 

necessary changes should and will be made to the HRM and the PAAV modules. Such 
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refinements and improvements are necessary in light of new experimental evidence. Such 

modeling approach is slow and challenging, but necessary in the end. 
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Samenvatting 

Het oorspronkelijke doel van mijn promotieonderzoek was het bestuderen van technieken 

en methoden om geloofwaardige kunstmatige tegenstanders voor computerspellen te 

ontwerpen met behulp van de cognitieve architectuur ACT-R. Daarvoor heb ik een eerste 

onderzoek uitgevoerd naar de manieren waarop mensen beslissingen nemen en redeneren 

wanneer ze een computerversie van het bordspel SET spelen (hoofdstuk 2). Uit een 

uitvoerige analyse van de gegevens over oogbewegingen en andere gedragsmaten van de 

deelnemers bleek dat de visuele waarneming rechtstreeks kan beïnvloeden hoe beslissingen 

worden genomen. Het onderzoek liet echter ook zien dat de bestaande cognitieve 

architecturen, waaronder ACT-R, niet geavanceerd genoeg zijn om complexe taken zoals 

SET te modelleren. Het onderzoek gaf duidelijk aan dat er in ACT-R twee belangrijke 

componenten ontbraken. Naar aanleiding van deze resultaten is het oorspronkelijke doel 

opnieuw geformuleerd als het onderzoeken van de minimale componenten van een 

cognitieve architectuur die nodig zijn om aannemelijke cognitieve modellen voor complexe 

taken als computerspellen te ontwikkelen. 

De specifiekere doelen waren (1) het opstellen van een samenhangend theoretisch kader 

voor top-down controle (het beslissen en plannen) en perceptuele bottom-up processen 

(controle van de visuele aandacht), en (2) het ontwikkelen van software-instrumenten die de 

bovenstaande processen onafhankelijk van specifieke taakparadigma's kunnen simuleren. Ik 

heb gedragsexperimenten uitgevoerd om de processen te onderzoeken die een rol spelen bij 

de visuele aandachtscontrole tijdens een probleemtaak. Ik heb twee 

modelleringsinstrumenten ontwikkeld waarin de theoretische bevindingen uit mijn 

onderzoek zijn opgenomen: de Pre-Attentive and Attentive Vision (PAAV)-module en de 

Human Reasoning Module (HRM). De PAAV-module is een implementatie van theorieën 

over de menselijke visuele waarneming (waaronder visuele geheugens en op contrasten 

gebaseerde saliency maps), waarin wordt gesteld dat naast parallelle preattentieve 

processen ook sequentiële attentieve visuele processen optreden (hoofdstuk 3). De HRM 

biedt een samenhangend kader voor het menselijk redeneren. Deze module stelt dat 

verschillende aspecten van het menselijk redeneren kunnen worden verklaard door 

deterministische inferentie van stochastische kennis (hoofdstuk 6). De PAAV-module en de 

HRM zijn onderdeel van de cognitieve architectuur ACT-R en kunnen worden gebruikt om 

het menselijke gedrag te modelleren voor een breed scala aan taken. Beide instrumenten 

zijn gevalideerd met experimentele gegevens. De broncodes zijn voor iedereen toegankelijk 

via deze link: http://www.ai.rug.nl/~n_egii/models/. 

Het menselijke zien 

Allereerst is voor elke complexe taak waarover op basis van realtime kennis van de 

omgeving een beslissing moet worden genomen, een betrouwbaar middel nodig om 

informatie te verzamelen. Van de vijf zintuigen is het visuele systeem ongetwijfeld het 

belangrijkste middel om die informatie te verzamelen. De meeste moderne technologieën 

zijn ontworpen rondom visuele input als belangrijkste informatiebron voor de gebruiker. 

Het onderzoek naar efficiënte communicatie van informatie draait grotendeels om de 

visualisatie van informatie. Een van de kernmodules van ACT-R is de visuele module. 

Helaas biedt deze module slechts een basale implementatie van het menselijke visuele 

systeem. 

De controle van de visuele aandacht is een zeer complex proces dat uit zowel top-down 

als bottom-up componenten bestaat (Orban, Fiser, Aslin & Lengyel, 2008). Aan de ene kant 
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wordt de visuele aandacht gecontroleerd door inherente bottom-up kenmerken van een 

visuele scène, zoals de op contrasten gebaseerde opvallendheid (saliency) van de 

samenstellende delen. Aan de andere kant wordt de visuele aandacht ook gecontroleerd 

door top-down componenten, zoals het directe doel en een context die door eerdere 

ervaringen is bepaald. De visuele standaardmodule biedt geen ondersteuning voor de 

aandachtscontrole via bottom-up processen. Er ontbreken ook diverse andere essentiële 

functionaliteiten, zoals visuele lange- en kortetermijngeheugens, de omschrijving van 

visuele objecten aan de hand van verschillende soorten kenmerken, en een 

voorstellingsvermogen.  

De Pre-Attentive and Attentive Vision (PAAV)-module (hoofdstuk 3) is een uitbreiding 

van de visuele standaardmodule van ACT-R. Zoals de naam al aangeeft, voegt de PAAV-

module een aanzienlijke hoeveelheid preattentieve functionaliteit toe aan het visuele 

systeem van ACT-R. In feite is de PAAV-module een implementatie van een aantal goed 

onderzochte theorieën over de menselijke visuele waarneming, over onderwerpen die 

uiteenlopen van het visuele geheugen tot op contrasten gebaseerde saliency maps die de 

visuele aandacht controleren (Itti, Koch & Niebur, 1998). De implementatie van de PAAV-

module berust op een theorie over sequentiële aandachtsverschuivingen die worden 

gecontroleerd door informatie van een lagere orde, die preattentief via parallelle visuele 

processen wordt waargenomen. De capaciteit van deze parallelle processen is niet oneindig. 

Ze worden beperkt door de scherpte waarmee de verschillende soorten visuele kenmerken 

worden waargenomen. De PAAV-module ondersteunt een geavanceerdere 

aandachtscontrole die zowel bottom-up als top-down componenten omvat. De bottom-up 

controle wordt door inherente opvallende kenmerken van een scène aangestuurd, in plaats 

van door expliciete criteria die in een verzoek om een aandachtsverschuiving worden 

verstrekt. Op dezelfde wijze is de top-down controle geïntegreerd in een algemene saliency 

map, en wordt deze niet als een afzonderlijk systeem voor de aandachtscontrole behandeld. 

De PAAV-module integreert de top-down en bottom-up processen nog verder met een 

impliciet activeringsnetwerk tussen het visuele en declaratieve geheugen. Door deze 

verbeteringen kan ACT-R taken modelleren die uiteenlopen van standaard visuele 

zoektaken tot complexe probleemtaken waarbij realtime visuele informatie essentieel is 

voor het nemen van beslissingen. 

De PAAV-module is met succes gebruikt om menselijk gedrag te modelleren voor een 

visuele zoektaak voor kenmerken en conjuncties, waarbij een doelstimulus moest worden 

gevonden tussen een aantal distractors. Ook werd de module succesvol toegepast voor een 

vergelijkende visuele zoektaak, waarbij een verschil moest worden gevonden tussen twee 

sets stimuli die verder hetzelfde waren. Dit waren eenvoudige taken die werden gebruikt 

om de basale componenten van de PAAV-module te valideren. Om het modellerende en 

verklarende vermogen van de PAAV-module verder te bestuderen, heb ik diverse eye-

trackingonderzoeken uitgevoerd waarin complexe besluitvorming en redenering op basis 

van realtime visuele gegevens een rol speelden. Uit deze onderzoeken bleek dat modellen 

die op de PAAV-module waren gebaseerd, menselijk gedrag met succes konden nabootsen. 

Zo heb ik in mijn onderzoek van hoofdstuk 5 een op de PAAV-module gebaseerd model 

gebruikt om te verklaren hoe het beslissingsproces verandert als dezelfde taak op 

verschillende manieren visueel wordt gepresenteerd. In hoofdstuk 4 liet ik effecten zien die 

aanvankelijk in tegenspraak leken te zijn met de algemeen aanvaarde theorie over 

aandachtscontrole op basis van op contrasten gebaseerde saliency maps. De 

connectionistische wijze waarop de PAAV-module het visuele en declaratieve geheugen 
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benadert, helpt echter te verklaren hoe de top-down controle de bottom-up 

aandachtscontrole op basis van opvallendheid rechtstreeks kan opheffen. 

Het menselijke redeneren 

Iedere probleemtaak vereist een zekere mate van redeneren. Dat kan elke vorm van 

redeneren zijn: redeneren door analogie, redeneren op basis van regels of eenvoudigweg op 

basis van associaties. Hoewel de afzonderlijke stappen in het redeneerproces aan de 

specifieke context van een taak kunnen worden gekoppeld, is ons algemene vermogen om 

te redeneren een fundamenteel proces dat niet afhankelijk van een specifieke taak is. 

Redeneren op basis van analogie wordt bijvoorbeeld als een fundamenteel onderdeel van de 

menselijke cognitie beschouwd (Gust, Krumnack, Kühnberger & Schwering, 2008). 

Cummins (1996a, 1996b) stelde dat deontisch redeneren een aangeboren eigenschap is. 

Daarentegen zijn er ook bewijzen dat de kennisverwerving door jonge kinderen grotendeels 

afhangt van aangeboren concepten en principes (Baillargeon, 2008). In het specifieke geval 

van ACT-R zou er een algemene, taakonafhankelijke set productieregels moeten zijn die op 

basis van een gegeven context schematische regels voor het redeneren biedt. De regels in 

SET (hoofdstuk 2) schrijven bijvoorbeeld voor dat als twee kaarten van een mogelijke set 

groen en blauw zijn, de derde kaart rood moet zijn om een geldige set te vormen. Deze 

regel kan worden geschreven als (Blauw, Groen) => (Rood). Dit is een taakspecifieke regel. 

Het vermogen om op basis van deze regel te redeneren moet echter taakonafhankelijk zijn. 

ACT-R zou moeten beschikken over taakonafhankelijke kennis over de conjunctie van 

concepten. ACT-R zou ook over de kennis moeten beschikken dat de conjunctie van 

bepaalde concepten kan duiden op een ander concept. 

De Human Reasoning Module (HRM) uit hoofdstuk 6 voegt essentiële declaratieve en 

procedurele kennis aan ACT-R toe, waarmee deze op basis van taakspecifieke instructies 

kan redeneren. De HRM introduceert concept als expliciet begrip. De module weet ook dat 

afzonderlijke concepten gecombineerd kunnen worden tot complexere statements. Deze 

statements kunnen op hun beurt weer samengevoegd worden tot declaratieve regels die 

gebruikt kunnen worden om taakspecifieke instructies te coderen. De concepten, statements 

en regels op basis van statements vormen het declaratieve deel van de kennis van de HRM. 

De procedurele kennis van HRM bestaat uit een set taakonafhankelijke productieregels die 

beschrijven hoe declaratieve en andere vormen van kennis kunnen worden gebruikt om te 

redeneren. Als de HRM wordt toegepast en in het declaratieve geheugen de juiste set 

instructies voor een taak wordt gegeven, dan hoeft degene die het model maakt in het ideale 

geval slechts enkele taakspecifieke productieregels te schrijven die vooral verantwoordelijk 

zijn voor de metacontrole. 

De HRM streeft ernaar te verklaren hoe één enkele architectuur verschillende vormen van 

redeneren kan vertonen, van strikt klassieke logica tot pragmatisch redeneren, van inductie 

tot deductie en van deterministisch redeneren tot scholastisch Bayesiaans redeneren. Dat is 

een ambitieus doel, waarvoor meer onderzoek is vereist dan binnen het kader van mijn 

promotieonderzoek mogelijk is. De voorlopige resultaten die in hoofdstuk 6 worden 

beschreven, zijn echter veelbelovend. Het op de HRM gebaseerde model voor causale 

redeneertaken helpt bijvoorbeeld verklaren waarom iemand een pragmatische inductieve 

redenering blijft gebruiken, zelfs wanneer hij schijnbaar deductieve argumenten krijgt 

aangereikt, een effect dat Cummins in experimenten heeft waargenomen (1991, 1995). Een 

ander op de HRM gebaseerd model voor blicketdetectortaken (waarin wordt bepaald welke 

stimuli een speciaal apparaat in werking zetten) laat zien hoe een verzameling 
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deterministische symbolische regels kan leiden tot Bayesachtige probabilistische inferentie 

als gevolg van de onzekerheid waarmee informatie uit het declaratieve geheugen wordt 

opgehaald.  

Een laatste kenmerk waarmee de HRM zich onderscheidt van de traditionele opvattingen 

over de menselijke mentale logica (Rips, 1983), is dat het redeneren in de HRM niet 

uitsluitend een top-down proces is. De feiten en bewijzen die nodig zijn voor het redeneren, 

kunnen tussentijds uit andere informatiebronnen dan het declaratieve geheugen worden 

gehaald. Een voorbeeld van zo'n alternatieve bron is het visuele geheugen in de PAAV-

module. Als iemand mij vraagt welke positie een vork ten opzichte van een bord heeft en ik 

ze beide voor me zie liggen, dan hoef ik geen propositioneel statement uit mijn declaratieve 

geheugen op te halen. Ik haal dan gewoon onmiddellijk de locatie-‘cue’ van de vork uit 

mijn ruimtelijk geheugen. Op dezelfde wijze kan de PAAV-module tijdens het redeneren 

gebruikmaken van bottom-up informatie in het visuele geheugen. De module kan 

bijvoorbeeld ruwe ruimtelijke informatie uit het visuele geheugen halen en deze direct 

vertalen naar een declaratief statement. 

Het menselijke zien en redeneren verbonden 

De combinatie van de PAAV-module en de HRM binnen de ACT-R-architectuur levert 

een krachtig instrument op waarmee het menselijke gedrag voor de meest eenvoudige taken 

tot aan complexe probleemoplossing kan worden gemodelleerd. Hoofdstuk 6 beschrijft een 

model voor een ruimtelijke redeneertaak dat uiterst afhankelijk is van zowel de HRM als de 

PAAV-module. Met behulp van dit model probeer ik de verbanden  te verklaren tussen 

twee concurrerende theorieën over deductief redeneren: mentale modellen (Johnson-Laird, 

1983) en mentale logica (Rips, 1983). 

Hoofdstuk 7 beschrijft een onvolledig maar veelbelovend en interessant onderzoek naar 

de strategie van spelers bij het spel Qwirkle. Bij dit spel moeten de spelers uitvoerige 

vergelijkingen maken en alternatieve zetten tegen elkaar afwegen om een zo hoog 

mogelijke score te behalen. Tegelijkertijd bevat het spel sterk perceptuele elementen, 

aangezien het redeneren voor een groot deel berust op het al dan niet combineren van 

bepaalde kleuren en vormen. Hoewel we nog geen cognitief model hebben, wijst de analyse 

van de gegevens over mensen er al wel op dat de prestaties sterk afhangen van zowel het 

visuele systeem als het redeneervermogen dat zorgt voor het nemen van een optimale 

beslissing. Een aannemelijk model voor een Qwirklespeler zal daarom zowel de PAAV-

module als de HRM moeten bevatten.  

Ik verwacht dat de combinatie van de HRM en de PAAV-module een krachtig instrument 

zal bieden voor het opzetten van aannemelijke en praktische cognitieve modellen. Het 

laatste criterium ten aanzien van het praktische aspect is net zo belangrijk als het eerste. 

Naast de gebruikelijke toepassing om modellen op te zetten die enkel experimentele 

bevindingen bevestigen, biedt ACT-R veel mogelijkheden voor praktische toepassingen. 

ACT-R kan als softwareplatform worden gebruikt voor cognitief plausibele intelligente 

systemen, zoals cognitieve robots of intelligente onderwijssystemen. Ik doel dan niet op 

eigendomsmatige versies van ACT-R, zoals de versie achter de Cognitive Tutor van John 

Anderson, of ACT-R/E van het Amerikaanse Naval Research Laboratory. Ik zie juist een 

gemeenschappelijke opensourceversie van ACT-R voor me, die net zo geavanceerd is als 

de eigendomsmatige cognitieve architecturen. Zowel de HRM als de PAAV-module zijn op 

mijn homepagina vrij beschikbaar onder de GNU General Public License. Ik moedig 

iedereen aan om de broncodes te downloaden, ermee te experimenteren, en zelfs eigen 
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versies van de PAAV-module of HRM te ontwikkelen. Ook doe ik een oproep aan iedereen 

die geïnteresseerd is in de gezamenlijke ontwikkeling van geavanceerde opensourceversies 

van cognitieve architecturen voor praktische doeleinden. 
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Appendix A 

Card game of SET 

The SET7 card deck consists of 81 cards. Each card differs from other cards by a unique 

combination of four attributes: color, number, shape, and shading. Each attribute can have 

one of three distinct values: red, green, and blue for the color; open, solid, and textured for 

the shading; one, two, and three for the number; oval, rectangle, and wiggle for the shape. 

The gameplay for SET is relatively simple. At any moment in the game, 12 cards are dealt 

face up, as is shown in Figure A.1. From those 12 cards, players should find any 

combination of three cards, further referred to as a set, satisfying a rule stating that in the 

three cards the values for each particular attribute should be all the same or all different. We 

will further refer to the number of attributes for which the three cards in the set have 

different values as the set level. A level 1 set has only one attribute with three different 

values, but three attributes with identical values. Correspondingly, there can be sets of level 

2, 3, or 4. Figure A.1 shows an example of a level 1 (different shape) and a level 4 set (all 

attributes are different). In a similar manner, we can quantify perceptual similarity of two 

cards as the number of attributes that are shared between the two. For example, the cards in 

a level 1 set have a perceptual similarity of three among each other as they have three 

attributes with identical values. Cards in a level 4 set have a perceptual similarity of 0 

because all attribute values are different. 

 

 
 

In the regular game, when a set is found, the corresponding set cards are picked up and 

replaced with new cards from a deck. After the deck runs out, the player with the most 

cards wins. Even though a regular game of set consists of multiple rounds, we will refer to a 

“game of set” in what is normally a single round: finding a set in 12 displayed cards. 

                                                            
7 SET is a game by Set Enterprises (www.setgame.com). 

Figure A.1: An example array of 12 cards. The cards with the solid highlight 

form a level 4 set (all attributes are different), and cards with dashed highlight 

form a level 1 set (shape is different, and all other attributes are the same). 
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Appendix B 

ACT-R cognitive architecture 

ACT-R8 has a modular organization where each module is dedicated to a distinct type of 

cognitive resources. ACT-R consists of several modules, such as Vision module for 

handling visual processing, Declarative module for simulating declarative memory, and 

Goal module for tracking a model's state and objectives. Figure B.1 shows six core modules 

of ACT-R architecture as described in Anderson (2007). The modules mostly communicate 

with each other via Procedural module that allows a modeler to write task specific 

production rules. However, in limited cases, modules can also spread activation to other 

modules simulating low-level sub-symbolic cognitive processes. ACT-R procedural system 

is completely serial, and, therefore, only one production rule can be called at the time. 

Factual knowledge in ACT-R is represented by chunks with slots where other chunks 

serve as slot values. Each module has its own buffer where either new chunks can be 

created or existing chunks can be passed on. Three modules that are most important for this 

study are described next. 

 

 
 

The visual module handles visual mechanisms such as perception, attention shift, and 

encoding of visuals stimuli. Visual stimuli are represented in form of chunks within the 

visicon, a virtual imitation of a screen visible to a model. This module cannot create new 

chunks, but rather “perceives” chunks within the visicon by placing encoded chunks in its 

visual buffer. 

Declarative module is an implementation of human long-term declarative memory. Every 

chunk that has been cleared from any buffer is stored in declarative module and can be 

retrieved again. The declarative module can retrieve only one chunk at a time, which is 

stored in the module’s buffer. Each chunk in declarative memory has a base-level activation 

value, which represents frequency and recency of use (e.g., Anderson & Schooler, 1991). A 

chunk’s activation in declarative memory can also be influenced by chunks contained in 

buffers at the time of retrieval via a spreading activation mechanism. Based on activation, 

the module computes the probability and time cost of retrieving a chunk from memory.  

Lastly, there is an imaginal or problem state module that serves as a working memory. 

This module is unique as it can create new chunks that are neither perceived in the 

                                                            
8 ACT-R stands for Adaptive Control of Thought-Rational 

Figure B.1: ACT-R architecture from the perspective of six core modules. 
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environment, nor retrieved from DM. Slot values from chunks in other buffers can be used 

as values for the new chunk’s slots. However, creating a new chunk is a time-costly process 

that takes 200 ms, a parameter in the architecture that is typically not changed. 

The other two extra modules are Threaded Cognition (Salvucci & Taatgen, 2008) and 

Base-Level Inhibition (Lebiere & Best, 2011). With Threaded Cognition, we assume that 

there are two separate and parallel meta-controls governing the overall top-down strategy 

and the bottom-up visual attention shifts respectively. Lastly, the Base-Level Inhibition 

module provides a short-term activation inhibition of items in declarative memory. This 

module is necessary for modeling complex short-term tasks in which several alternatives 

need to be stored in and retrieved from memory. 

 

1

 
 

The architecture provides an essential set of parameters by default including, but not 

limited to, times it takes to move the mouse, retrieve a chunk from memory, or encode a 

visual stimulus. It also provides a set of adjustable parameters and range of recommended 

values for each of those parameters. These elements of the architecture have received 

extensive experimental support (e.g., Anderson, 2007 and see http://act-r.psy.cmu.edu/). 

 

 

Figure B.2: Internal workings and external connections between vision, 

declarative, goal, imaginal and procedural modules of ACT-R architecture. 

These four modules provide the most of the functionalities necessary for 

modeling SET tasks. 
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Appendix C  

Calculation of significant dimension reduction blocks 

The probability of k subsequent fixations falling on cards that have at least one value in 

common if the fixations are assumed to be random is calculated with a following equation: 
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k  –   the number of fixation in fixation subsequence 

nij – a number of cards in array of 12 cards that have value j for an attribute i 

 

Before further explanation, one should consider that this analysis is done on collapsed 

fixation sequence where consecutive fixations on the same card are considered as a single 

fixation therefore the next fixation always falls on another card.  

Let’s assume that there are five green cards among 12 cards on the desk. If we assume 

that subjects is always fixating on one of the cards before fixating on another card then the 

number of possible cards on which subject can fixate is 11. Probability of randomly fixating 

on one of those 11 cards is 1/11. Now if we assume that subject started looking at green 

cards then the probability of the first fixation on any green card is 5/11. However the 

probability of second consecutive fixation on another green card is 4/11, since subject is 

already fixating on one of the green cards. The probability of each of next consecutive 

fixations after the second fixation will be 4/11 as well. If subject did seven consecutive 

fixations on green cards then the probability of entire block of fixations will be 
a
bb ∗ �

c
bb�

d
. 

If instead we want to calculate a probability of seven consecutive fixations on cards that 

share any attribute value (not just green color) then it will be the sum of probabilities for 

each individual attribute value.  

If the calculated probability of the block of k fixations is below 0.05 then it is assumed to 

be not produced by chance. The blocks are calculated for each attribute type. If two blocks 

of fixations from different attributes overlap then the block with the least chance probability 

is preferred. The other block is cut at the point of an overlap, and its probability is 

calculated again based on the block’s new length. If the two blocks overlap and have an 

equal chance probability then the longest block is preferred. If the lengths are also equal 

then one of the blocks is randomly chosen and removed. Finally, Holm-Bonferroni 

correction was used on initial significance value of 0.05.  The correction compensated for 

the inflation of the chance probability when multiple solid blocks are present in the same 

trial. 
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Appendix D 

Analysis of residuals of ARIMA models applied to proportions of dimension 

reduction usage by human subjects 

We used ARIMA models to reveal the trends in dimension reduction data shown in 

Figure 5.6b. In both word and picture set, we used points from first 70 fixations as time 

series for building the ARIMA models. Both ACF and PACF were non-significant for both 

time series after first order differencing (figures D.1b and D.2b). Therefore, we used 

ARIMA of order (1, 0, 1) with no seasonal component and no constant terms included in 

the models. In ARIMA model for picture set, the AR(1) coefficient is 0.9953 (SE = 0.0053, 

|z| = 187.7925), and MA(1) coefficient is 0.2047 (SE = 0.1106, |z| = 1.851). In ARIMA 

model for word set ARIMA model, AR(1) coefficient is 0.9978 (SE = 0.0028, |z| = 

356.3571) and MA(1) coefficient is 0.0354 (SE = 0.1099, |z| = 0.322111). All coefficients 

except MA(1) coefficient in word set model are significant. We did a residual diagnostics 

as goodness-of-fit tests. In both models, the residuals show no trend with no significant 

correlations present among ACF values of residuals.  The Ljung-Box-Pierce statistics done 

for each lag up to 20 resulted in all non-significant p-values for both ARIMA models 

(figures D.3 and D.4). All in all, fit for both models were good. We used both models to 

forecast future trends of using dimension reduction for 60 fixations ahead. The forecast are 

shown in Figure D.5. Forecasts show downward trends in usage of dimension reduction 

usage that is in conformance with results from previous analysis. 

 

 
 

Figure D.1: ACF and PACF graphs of proportions of dimension reduction usage 

for a picture trial (a) with no differencing applied and (b) with first order 

differencing. 
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Figure D.3: Analysis of residuals for goodness-of-fit for ARIMA(1, 0, 1) model 

of picture trial. 
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Figure D.2: ACF and PACF graphs of proportions of dimension reduction usage 

for a word trial (a) with no differencing applied and (b) with first order 

differencing. 

(a) (b) 

5 10 15 20

-1
.0

0
.0

0
.5

1
.0

Lag

A
C

F

Word trial time series with no differencing

5 10 15

-1
.0

0
.0

0
.5

1
.0

Lag

P
ar

ti
al

 A
C

F

5 10 15 20

-1
.0

0
.0

0
.5

1
.0

Lag

A
C

F

Word trial time series with first order of differencing

5 10 15

-1
.0

0
.0

0
.5

1
.0

Lag

P
ar

ti
al

 A
C

F



158 | Appendix D 

 

 

 

 

 

 

Figure D.5: The proportions of dimension reduction usage in (a) picture 

and (b) word trials as predicted by ARIMA models. 
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Figure D.4: Analysis of residuals for goodness-of-fit for ARIMA(1, 0, 

1) model of word trial. 
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Appendix E 

Analysis of residuals of ARIMA models applied to proportions of dimension 

reduction usage by ACT-R models 

We also used ARIMA models to reveal the trends in models' dimension reduction data. 

Similarly to analysis of human data, we used points from first 70 fixations as time series. 

Both ACF and PACF were non-significant for picture set time series after first order 

differencing (Figure E.1b). Both ACF and PACF decayed quickly for word set time series 

without any differencing (Figure E.2a). Therefore, we used no differencing in both ARIMA 

models. No seasonal component and no constant terms were included in the models. A 

square root transformation was done on the picture set data for better fit of ARIMA model. 

We used models with (2, 0 1) and (1, 0, 1) orders for picture set and word set respectively.  

Table E.1 shows the resulting fitted coefficients. Absolute z values indicate that all 

coefficients are significant.  

 

Table E.1: Fitted coefficients for ARIMA(2, 0, 1) and ARIMA(1, 0, 1) models for picture 

and word set respectively. 

 

 Picture set Word set 

 AR(1) AR(2) MA(1) AR(1) MA(1) 

Coefficients 1.9938 -0.9946 -0.7787 0.9876 0.5452 

S.E. 0.0095 0.0096 0.0990 0.0119 0.0937 

|z| 209.87 103.60 7.87 82.99 5.82 

 

We did a residual diagnostics as goodness-of-fit tests. In both models, the residuals show 

no trend with no significant correlations present among ACF values of residuals.  The 

Ljung-Box-Pierce statistics done for each lag up to 20 resulted in all non-significant p-

values for both ARIMA models (figures E.3 and E.4). Overall, models fit well the data and 

can be used for predictions. We used both models to forecast future trends of using 

dimension reduction for 60 fixations ahead. The forecast are shown in E.5. Similar to 

human data, forecasts show downward trends in usage of dimension reduction usage. 
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Figure E.2: ACF and PACF graphs of proportions of dimension 

reduction usage for a word trial (a) with no differencing applied and (b) 

with first order differencing. 
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Figure E.1: ACF and PACF graphs of proportions of dimension 

reduction usage for a picture trial (a) with no differencing applied and (b) 

with first order differencing. 

(a) (b) 

5 10 15 20

-1
.0

0
.0

0
.5

1
.0

Lag

A
C

F
Picture trial time series with no differencing

5 10 15

-1
.0

0
.0

0
.5

1
.0

Lag

P
ar

ti
al

 A
C

F

5 10 15 20

-1
.0

0
.0

0
.5

1
.0

Lag

A
C

F

Picture trial time series with first order differencing

5 10 15

-1
.0

0
.0

0
.5

1
.0

Lag

P
ar

ti
al

 A
C

F



Appendix E | 161 

 
 

 
 

Figure E.4: Analysis of residuals for goodness-of-fit for ARIMA(1, 0, 1) 

model of word trial. 
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Figure E.3: Analysis of residuals for goodness-of-fit for ARIMA(2, 0, 1) 

model of picture trial 
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Figure E.5: Models' proportions of dimension reduction usage in word 

and picture trials as predicted by ARIMA models. 
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