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Unit 6: Selecting Productions on the Basis of Their Utilities and 

Learning these Utilities 

 

Occasionally, we have had cause to set parameters of productions so that one production 

will be preferred over another in the conflict resolution process.  Now we will examine 

how production utilities are computed and used in conflict resolution.  We will also look 

at how these utilities are learned. 

 

6.1 The Utility Theory 

 

Each production has a utility associated with it which can be set directly as we have seen 

in some of the previous units.  In this unit we will describe how those utilities can be 

learned from experience. Like activations, utilities have noise added to them. The noise is 

controlled by the utility noise parameter s which is set with the parameter :egs. The noise 

is distributed according to a logistic distribution with a mean of 0 and a variance of 
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If there are a number of productions competing with expected utility values Uj the 

probability of choosing production i is described by the formula 
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where the summation is over all the productions which are currently able to fire (their 

conditions were satisfied during the matching).  Note however that that equation only 

serves to describe the production selection process.  It is not actually computed by the 

system.  The production with the highest utility (after noise is added) will be the one 

chosen to fire. 

 

6.2 Building Sticks Example 

 

We will illustrate these ideas with an example from problem solving. Lovett (1998) 

looked at participants solving the building-sticks problem illustrated in the figure below.  

This is an isomorph of Luchins waterjug problem that has a number of experimental 

advantages.  Participants are given an unlimited supply of building sticks of three lengths 

and are told that their objective is to create a target stick of a particular length.  There are 

two basic strategies they can select – they can either start with a stick smaller than the 

desired length and add sticks (like the addition strategy in Luchins waterjugs) or they can 
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start with a stick that is too long and “saw off” lengths equal to various sticks until they 

reach the desired length (like the subtraction strategy).  The first is called the undershoot 

strategy and the second is called the overshoot strategy.  Subjects show a strong tendency 

to hillclimb and choose as their first stick a stick that will get them closest to the target 

stick.   
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You can go through a version of this by loading the model bst-nolearn.  By calling the 

command (bst-set 'human) you will run through a pair of problems in a version of the 

task built to run with a model (this is not the original experiment) and it will return a list 

of two items indicating which strategy, overshoot or undershoot, that you chose first.   

 

The experiment will look something like this: 

 

 
 

To do the task you will see four lines initially.  The top three are black and correspond to 

the building sticks you have available.  The fourth line is green and that is the target 

length you are attempting to build.  The current stick you have built so far will be blue 

and below the target stick.  You will build the current stick by pressing the button to the 

left of a stick you would like to use next.  If your current line is shorter than the target the 

new stick will be added to the current stick, and if your current line is longer than the 
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target the new stick will be subtracted from the current stick.  When you have 

successfully matched the target length the word “Done” will appear below the current 

stick and you will be able to progress to the next trial.  At any time you can hit the button 

labeled Reset to clear the current stick and start over. 
 

As it turns out, both of these problems can only be solved by the overshoot strategy.  

However, the first one looks like it can be solved more easily by the undershoot strategy.  

The exact lengths of the sticks in pixels are: 

 

A = 15  B = 200  C = 41 Goal = 103 

 

The difference between B and the goal is 97 pixels while the difference between C and 

the goal is only 62 pixels – a 35 pixel difference of differences.  However, the only 

solution to the problem is B – 2C – A.  The same solution holds for the second problem: 

 

A = 10  B = 200 C = 29 Goal = 132 

 

But in this case the difference between B and the goal is 68 pixels while the difference 

between C and the goal is 103 pixels – a 35 pixel difference of differences in the other 

direction.  You can run the model on these problems and it will tend to choose 

undershoot for the first and overshoot for the second but not always.  You can run the 

model multiple times by calling the function bst-task with one argument which is the 

number of runs through the two trials.  The following is the outcome of 100 trials (you 

may want to make the window virtual if you plan on running the model over lots of 

trials): 

 
> (bst-task 100) 

(25 73) 

 

The two numbers in the list returned are the number of times overshoot was chosen on 

the first problem and the second problem respectively.   

 

The model for the task involves many productions for encoding the screen and selecting 

sticks.  However, the behavior of the model is really controlled by four productions that 

make the decision as to whether to apply the overshoot or the undershoot strategy.  

 
(p decide-over 

    =goal> 

      isa      try-strategy 

      state    choose-strategy 

      strategy nil 

    =imaginal> 

      isa encoding 

      under    =under 

      over     =over 

 

    !eval! (< =over (- =under 25)) 
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==> 

    =imaginal> 

    =goal> 

      state    prepare-mouse 

      strategy over 

    +visual-location> 

      isa      visual-location 

      kind     oval 

      screen-y 60) 

 

(p force-over 

    =goal> 

      isa      try-strategy 

      state    choose-strategy 

    - strategy over 

==> 

    =goal> 

      state    prepare-mouse 

      strategy over 

    +visual-location> 

      isa      visual-location 

      kind     oval 

      screen-y 60) 

 

(p decide-under 

    =goal> 

      isa      try-strategy 

      state    choose-strategy 

      strategy nil 

    =imaginal> 

      isa encoding 

      over     =over 

      under    =under 

 

    !eval! (< =under (- =over 25)) 

==> 

    =imaginal> 

    =goal> 

      state    prepare-mouse 

      strategy under 

    +visual-location> 

      isa      visual-location 

      kind     oval 

      screen-y 85) 
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(p force-under 

    =goal> 

      isa      try-strategy 

      state    choose-strategy 

    - strategy under 

==> 

    =goal> 

      state    prepare-mouse 

      strategy under 

    +visual-location> 

      isa      visual-location 

      kind     oval 

      screen-y 85)  
 

The key information is in the over and under slots of the chunk in the imaginal buffer.  

The over slot encodes the pixel difference between stick b and the target stick, and the 

under slot encodes the difference between the target stick and stick c.  These values have 

been computed by prior productions that encode the problem.  If one of these differences 

appears to get the model much closer to the target (more than 25 pixels closer than the 

other) then the decide-under or decide-over productions can fire to choose the strategy.  

In all situations, the other two productions, force-under and force-over, can apply.  Thus, 

if there is a clear difference in how close the two sticks are to the target stick there will be 

three productions (one decide, two force) that can apply and if there is not then just the 

two force productions can apply.  The choice among the productions is determined by 

their relative utilities which we can see using the Procedural Viewer in the environment, 

or by using the spp command: 

 
> (spp force-over force-under decide-over decide-under) 

Parameters for production FORCE-OVER: 

 :utility  8.720 

 :u  10.000 

 :at  0.050 

Parameters for production FORCE-UNDER: 

 :utility  8.328 

 :u  10.000 

 :at  0.050 

Parameters for production DECIDE-OVER: 

 :utility 16.871 

 :u  13.000 

 :at  0.050 

Parameters for production DECIDE-UNDER: 

 :utility  6.597 

 :u  13.000 

 :at  0.050 

 

The utility values, u, were set by the following spp commands in the model: 

 
(spp decide-over :u 13) 

(spp decide-under :u 13) 

(spp force-over :u 10) 

(spp force-under :u 10) 

 

The :u parameters for the force productions are set to 10 while they are set to a more 
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optimistic 13 for the decide productions.  The :utility parameter shows the last computed 

utility value for the production during a conflict-resolution event and includes the utility 

noise.  Thus, we see that even though the true utility for decide-over is 13 it had a utility 

of 16.871 the last time it was matched in conflict-resolution.  Unless a production is 

explicitly assigned a value for u it is given a default of 0.  Therefore, the above four 

productions are the only ones in the model with non-zero utilities. 

 

Let us consider how these productions apply in the case of the two problems in the 

model.  Since the difference between the under and over differences is 35 pixels, there 

will be one decide and two force productions that match for both problems.  Let us 

consider the probability of choosing each production according to the equation.  

 


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In the model, the parameter s is set at 3.  First, consider the probability of the decide 

production: 
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Similarly, the probability of the two force productions can be shown to be .248.  Thus, 

there is a .248 probability that a force production will fire that has the model try to solve 

the problem in the direction other than it appears. 

 

6.3 Utility Learning 

 

So far we have only considered the situation where the production parameters are static. 

The utilities of productions can also be learned as the model runs based on rewards that 

are received by the model.  When utility learning is enabled, they are updated according 

to a simple integrator model (e.g. see Bush & Mosteller, 1955)
.
. If Ui(n-1) is the utility of 

a production i after its n-1st application and Ri(n) is the reward the production receives 

for its nth application, then its utility Ui(n) after its nth application will be 

 



Ui(n) Ui(n1)[Ri(n)Ui(n1)] Difference Learning Equation 

 

where  is the learning rate and is typically set at .2 (this can be changed by adjusting the 
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:alpha parameter with the sgp command).  This is also basically the Rescorla-Wagner 

learning rule (Rescorla & Wagner, 1972).  According to this equation the utility of a 

production will be gradually adjusted until it matches the average reward that the 

production receives. 

 

There are a couple of things to mention about the rewards.  The rewards can occur at any 

time, and are not necessarily associated with any particular production.  A number of 

productions may have fired before a reward is delivered.  The reward Ri(n) that 

production i will receive will be the external reward received minus the time from 

production i’s selection to the reward.  This serves to give less reward to more distant 

productions.  This is like the temporal discounting in reinforcement learning but proves to 

be more robust within the ACT-R architecture (not suggesting it is generally more 

robust).  This reinforcement goes back to all the productions which have fired between 

the current reward and the previous reward. 

 

While it is possible to introduce rewards into ACT-R at any time by calling the trigger-

reward command, it is also possible to attach them to specific productions, and this is 

often an efficient way to introduce rewards.  For instance, in the building sticks task there 

is one production that fires when an action has been successful and another which fires 

when it has not: 

 
(p read-done 

   =goal> 

     isa      try-strategy 

     state    read-done 

   =visual> 

     isa      text 

     value    "done" 

==> 

   +goal> 

     isa      try-strategy 

     state    start) 

 

(p pick-another-strategy 

   =goal> 

     isa      try-strategy 

     state    wait-for-click 

   ?manual> 

     state free 

   =visual-location>  

     isa      visual-location 

   > screen-y 100 

==> 

   =goal> 

      state choose-strategy) 
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One can associate rewards with these outcomes by setting the reward values of those 

productions: 
 

(spp read-done :reward 20) 

(spp pick-another-strategy :reward 0) 

 

When read-done fires it will propagate a reward of 20 back to the previous productions 

which have been fired.  Of course, productions earlier in the chain will receive smaller 

values because the time to the reward is subtracted from the reward.   If pick-another-

strategy fires, a reward of 0 will be propagated back – which means that previous 

productions will actually receive a negative reward because of the time that passed.  

Consider what happens when a sequence of productions leads to a dead end, pick-

another-strategy fires, another sequence of productions fire that leads to a solution, and 

then read-done fires.   The reward associated with read-done will propagate back only to 

the production which fired after pick-another-strategy and no further because the reward 

only goes back as far as the last reward.  Note that the production read-done will receive 

its own reward, but pick-another-strategy will not receive any of read-done’s reward 

since it will have received the reward from its own firing. 
 

6.4 Learning in the Building Sticks Task 

 

The following are the percent choice of overshoot for each of the problems in the testing 

set from an experiment with a building sticks task reported in Lovett & Anderson (1996): 

 
 

  a     b      c        Goal   %OVERSHOOT 

 15    250     55        125      20 

 10    155     22        101      67 

 14    200     37        112      20 

 22    200     32        114      47 

 10    243     37        159      87 

 22    175     40         73      20 

 15    250     49        137      80 

 10    179     32        105      93 

 20    213     42        104      83 

 14    237     51        116      13 

 12    149     30         72      29 

 14    237     51        121      27 

 22    200     32        114      80 

 14    200     37        112      73 

 15    250     55        125      53 

 

 

The majority of these problems look like they can be solved by undershoot and in some 

cases the pixel difference is greater than 25.  However, the majority of the problems can 

only be solved by overshoot.  The first and last problems are interesting because they are 
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identical and look strongly like they are undershoot problems. It is the only problem that 

can be solved either by overshoot or undershoot. Only 20% of the participants solve the 

first problem by overshoot but after the sequence of problems this rises to 53% for the 

last problem. 

 

The model bst-learn included with the unit simulates this experiment.  This is the same 

as the model in bst-nolearn except that the learning mechanism is enabled (the :ul 

parameter is t in the sgp command) and all of the stimuli for the experiment are now 

encoded in the *bst-stimuli* variable.  The productions are given the same initial utility 

values as in bst-nolearn. The utilities at the start of the experiment look like this: 

 
> (spp force-over force-under decide-over decide-under) 

 Parameters for production FORCE-OVER: 

 :utility    NIL 

 :u  10.000 

 :at  0.050 

 :reward    NIL 

Parameters for production FORCE-UNDER: 

 :utility    NIL 

 :u  10.000 

 :at  0.050 

 :reward    NIL 

Parameters for production DECIDE-OVER: 

 :utility    NIL 

 :u  13.000 

 :at  0.050 

 :reward    NIL 

Parameters for production DECIDE-UNDER: 

 :utility    NIL 

 :u  13.000 

 :at  0.050 

 :reward    NIL 

 

The following is the performance of the model on a 100 simulation run: 
 

> (bst-experiment 100) 

CORRELATION:  0.803 

MEAN DEVIATION: 17.129 

 

Trial 1    2    3    4    5    6    7    8    9   10   11   12   13   14   15       

     23.0 60.0 59.0 70.0 91.0 42.0 80.0 86.0 59.0 34.0 33.0 22.0 54.0 72.0 56.0 

 

DECIDE-OVER : 13.1506 

DECIDE-UNDER: 11.1510 

FORCE-OVER  : 12.1525 

FORCE-UNDER : 6.5943 

 

Also printed out are the average values of the utility parameters for the critical 

productions after each run through the experiment over these 100 runs.  As can be seen, 

the two over productions have increased their utility while the under productions have 

had a drop off.  On average, the force-over production has a slightly higher value than 

the decide-under production.  It is this change in values that creates the increased 

tendency to choose the overshoot strategy. 

 

This model also turns on the utility learning trace, the :ult parameter, which works similar 

to the activation trace shown in the previous unit.  If you enable the trace in the model by 
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setting the :v parameter to t then every time there is a reward given to the model the trace 

will show the utility changes for all of the productions affected by that reward.  Here is an 

example from a run showing the positive reward for successfully completing a trial: 

 
     5.163   PROCEDURAL             PRODUCTION-FIRED READ-DONE  

     5.163   UTILITY                PROPAGATE-REWARD 20  

 Utility updates with Reward = 20.0   alpha = 0.2 

  Updating utility of production START-TRIAL 

   U(n-1) = 0.0   R(n) = 14.837 [20.0 - 5.163 seconds since selection] 

   U(n) = 2.9674 

  Updating utility of production FIND-NEXT-LINE 

   U(n-1) = 0.0   R(n) = 14.887 [20.0 - 5.113 seconds since selection] 

   U(n) = 2.9774 

  Updating utility of production ATTEND-LINE 

   U(n-1) = 0.0   R(n) = 14.937 [20.0 - 5.063 seconds since selection] 

   U(n) = 2.9874 

  Updating utility of production ENCODE-LINE-A 

   U(n-1) = 0.0   R(n) = 15.0720005 [20.0 - 4.928 seconds since selection] 

   U(n) = 3.0144002 

  Updating utility of production FIND-NEXT-LINE 

   U(n-1) = 2.9774   R(n) = 15.122 [20.0 - 4.878 seconds since selection] 

   U(n) = 5.40632 

  Updating utility of production ATTEND-LINE 

   U(n-1) = 2.9874   R(n) = 15.172 [20.0 - 4.828 seconds since selection] 

   U(n) = 5.42432 

  Updating utility of production ENCODE-LINE-B 

   U(n-1) = 0.0   R(n) = 15.3220005 [20.0 - 4.678 seconds since selection] 

   U(n) = 3.0644002 

  Updating utility of production FIND-NEXT-LINE 

   U(n-1) = 5.40632   R(n) = 15.372 [20.0 - 4.628 seconds since selection] 

   U(n) = 7.399456 

  Updating utility of production ATTEND-LINE 

   U(n-1) = 5.42432   R(n) = 15.422 [20.0 - 4.578 seconds since selection] 

   U(n) = 7.4238563 

  Updating utility of production ENCODE-LINE-C 

   U(n-1) = 0.0   R(n) = 15.557 [20.0 - 4.443 seconds since selection] 

   U(n) = 3.1114001 

  Updating utility of production FIND-NEXT-LINE 

   U(n-1) = 7.399456   R(n) = 15.607 [20.0 - 4.393 seconds since selection] 

   U(n) = 9.040965 

  Updating utility of production ATTEND-LINE 

   U(n-1) = 7.4238563   R(n) = 15.657 [20.0 - 4.343 seconds since selection] 

   U(n) = 9.070485 

  Updating utility of production ENCODE-LINE-GOAL 

   U(n-1) = 0.0   R(n) = 15.792 [20.0 - 4.208 seconds since selection] 

   U(n) = 3.1584 

  Updating utility of production ENCODE-UNDER 

   U(n-1) = 0.0   R(n) = 15.927 [20.0 - 4.073 seconds since selection] 

   U(n) = 3.1854 

  Updating utility of production ENCODE-OVER 

   U(n-1) = 0.0   R(n) = 16.062 [20.0 - 3.938 seconds since selection] 

   U(n) = 3.2124002 

  Updating utility of production DECIDE-UNDER 

   U(n-1) = 13.0   R(n) = 16.112 [20.0 - 3.888 seconds since selection] 

   U(n) = 13.6224 

  Updating utility of production MOVE-MOUSE 

   U(n-1) = 0.0   R(n) = 16.162 [20.0 - 3.838 seconds since selection] 

   U(n) = 3.2324002 

  Updating utility of production CLICK-MOUSE 

   U(n-1) = 0.0   R(n) = 16.713 [20.0 - 3.287 seconds since selection] 

   U(n) = 3.3425999 

  Updating utility of production LOOK-FOR-CURRENT 
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   U(n-1) = 0.0   R(n) = 17.063 [20.0 - 2.937 seconds since selection] 

   U(n) = 3.4126 

  Updating utility of production ATTEND-LINE 

   U(n-1) = 9.070485   R(n) = 17.112999 [20.0 - 2.887 seconds since selection] 

   U(n) = 10.6789875 

  Updating utility of production ENCODE-LINE-CURRENT 

   U(n-1) = 0.0   R(n) = 17.248 [20.0 - 2.752 seconds since selection] 

   U(n) = 3.4496 

  Updating utility of production CALCULATE-DIFFERENCE 

   U(n-1) = 0.0   R(n) = 17.383 [20.0 - 2.617 seconds since selection] 

   U(n) = 3.4766 

  Updating utility of production CONSIDER-C 

   U(n-1) = 0.0   R(n) = 17.433 [20.0 - 2.567 seconds since selection] 

   U(n) = 3.4866002 

  Updating utility of production CHOOSE-C 

   U(n-1) = 0.0   R(n) = 17.568 [20.0 - 2.432 seconds since selection] 

   U(n) = 3.5136 

  Updating utility of production MOVE-MOUSE 

   U(n-1) = 3.2324002   R(n) = 17.618 [20.0 - 2.382 seconds since selection] 

   U(n) = 6.10952 

  Updating utility of production CLICK-MOUSE 

   U(n-1) = 3.3425999   R(n) = 17.668 [20.0 - 2.332 seconds since selection] 

   U(n) = 6.2076797 

  Updating utility of production LOOK-FOR-CURRENT 

   U(n-1) = 3.4126   R(n) = 17.868 [20.0 - 2.132 seconds since selection] 

   U(n) = 6.3036804 

  Updating utility of production ATTEND-LINE 

   U(n-1) = 10.6789875   R(n) = 17.918 [20.0 - 2.082 seconds since selection] 

   U(n) = 12.12679 

  Updating utility of production ENCODE-LINE-CURRENT 

   U(n-1) = 3.4496   R(n) = 18.053 [20.0 - 1.947 seconds since selection] 

   U(n) = 6.37028 

  Updating utility of production CALCULATE-DIFFERENCE 

   U(n-1) = 3.4766   R(n) = 18.188 [20.0 - 1.812 seconds since selection] 

   U(n) = 6.41888 

  Updating utility of production CONSIDER-C 

   U(n-1) = 3.4866002   R(n) = 18.238 [20.0 - 1.762 seconds since selection] 

   U(n) = 6.43688 

  Updating utility of production CONSIDER-A 

   U(n-1) = 0.0   R(n) = 18.373 [20.0 - 1.627 seconds since selection] 

   U(n) = 3.6746 

  Updating utility of production CHOOSE-A 

   U(n-1) = 0.0   R(n) = 18.508 [20.0 - 1.492 seconds since selection] 

   U(n) = 3.7015998 

  Updating utility of production MOVE-MOUSE 

   U(n-1) = 6.10952   R(n) = 18.558 [20.0 - 1.442 seconds since selection] 

   U(n) = 8.599216 

  Updating utility of production CLICK-MOUSE 

   U(n-1) = 6.2076797   R(n) = 19.045 [20.0 - 0.955 seconds since selection] 

   U(n) = 8.775144 

  Updating utility of production LOOK-FOR-CURRENT 

   U(n-1) = 6.3036804   R(n) = 19.395 [20.0 - 0.605 seconds since selection] 

   U(n) = 8.921945 

  Updating utility of production ATTEND-LINE 

   U(n-1) = 12.12679   R(n) = 19.445 [20.0 - 0.555 seconds since selection] 

   U(n) = 13.590432 

  Updating utility of production ENCODE-LINE-CURRENT 

   U(n-1) = 6.37028   R(n) = 19.58 [20.0 - 0.42 seconds since selection] 

   U(n) = 9.012224 

  Updating utility of production CALCULATE-DIFFERENCE 

   U(n-1) = 6.41888   R(n) = 19.715 [20.0 - 0.285 seconds since selection] 

   U(n) = 9.078104 

  Updating utility of production CHECK-FOR-DONE 
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   U(n-1) = 0.0   R(n) = 19.765 [20.0 - 0.235 seconds since selection] 

   U(n) = 3.9529998 

  Updating utility of production FIND-DONE 

   U(n-1) = 0.0   R(n) = 19.815 [20.0 - 0.185 seconds since selection] 

   U(n) = 3.963 

  Updating utility of production READ-DONE 

   U(n-1) = 0.0   R(n) = 19.95 [20.0 - 0.05 seconds since selection] 

   U(n) = 3.9900002 

6.5 Learning in a Probability Choice Experiment 

 

Your assignment is to develop a model for a "probability matching" experiment run by 

Friedman et al (1964).  The difference between this assignment and earlier ones is that 

you are responsible for almost all of the code for the model, including the code which 

presents the experiment.  The experiment to be implemented is very simple.  The basic 

procedure, which is repeated for 48 trials, is: 

 

1. The participant is presented with a screen saying "Choose" 

2. The participant either types H for heads or T for tails 

3. When the key is pressed the screen is cleared and presents as feedback the correct 

answer, either "Heads" or "Tails". 

4. That feedback stays there for exactly 1 second before the next trial is presented.  

 

Friedman et al arranged it so that heads was the correct choice on 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80%, and 90% of the trials (independent of what the participant had 

done).  For your experiment you will only be concerned with the 90% condition.  Thus, 

your experiment will be 48 trials long and “Heads” will be the correct answer 90% of the 

time.  We have averaged together the data from the 10% and 90% conditions (flipping 

responses) to get an average proportion of choice of the dominant answer in each block 

of 12 trials.  These proportions are 0.66, 0.78, 0.82, and 0.84.  This is the data that your 

model is to fit.  Note, this is not the percentage of correct responses – the correctness of 

the response does not matter.  Your model must begin with a 50% chance of saying 

heads, then based on the feedback from the experiment adjust its probabilities so that it 

averages close to 66% over the first block of 12 trials, and increase to about 84% by the 

final block.  You will run the model through the experiment many times (resetting before 

each experiment) and average the data of those runs for comparison.  As an aspiration 

level, this is the performance of the model that I wrote, averaged over 100 runs: 
 

 

> (collect-data 100) 

CORRELATION:  0.991 

MEAN DEVIATION:  0.012 

 Original     Current 

   0.660       0.663 

   0.780       0.787 

   0.820       0.816 

   0.840       0.818 

 

In achieving this, the parameters I worked with were the noise in the utilities (set by the 

:egs parameter in the sgp command) and the rewards associated with successful and 

unsuccessful predictions. 
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The starting model you are given for this task, choice, contains only the functions which 

are able to run a person through one trial and to collect a key press response using the 

“trial at a time” experiment writing style as discussed in the unit 4 experiment code 

document.  The rpm-window-key-event-handler method provided is very similar to those 

from other units and will record a key press from either a person or the model by setting 

the variable *response* to the string representing that key.  The function do-choice-

person will run one trial returning the key that was pressed.  You will have to write a 

similar function to run the model through one trial, which should be named do-choice-

model.  You also need to write a function called choice-data that takes one parameter 

and runs the experiment that many times and prints out the average results of the runs and 

the correlation and deviation of the average data to the experimental data.  The choice-

data function does not have to be able to run a person through the task.  It only needs to 

be able to run the model.  You also must write the model for the task that fits the data.   

 

My suggestion would be to first write the do-choice-model function and a model that 

does the task (without trying to fit the data), and make sure that works correctly.  An 

important issue here is to make sure that it correctly represents the experiment described, 

including the timing.  Next write a function to run a block of 12 trials and test that to 

make sure the model works correctly when going from trial to trial.   Then write a 

function to iterate over 4 blocks for running one pass of the experiment and test that.  

After that is working write the choice-data function to run the experiment multiple times.  

Only then should you be concerned with actually fitting the model to the data, once you 

are sure everything else works.  

 

To write the experiment for the model to interact with you will need to use a few ACT-R 

functions that were discussed in the previous units’ experiment description files.  Those 

functions will be described again here, and the models you have seen up to this point 

should provide plenty of examples of their use. 

 

The reset function initializes ACT-R. It returns the model to the initial state as specified 

in the model file.  It is the programmatic equivalent of pressing the “Reset” button in the 

environment. 

 

The function install-device takes one parameter which should be a window.  That 

parameter tells ACT-R with which window the model will be interacting.  Everything in 

that window can be seen by the model, and all of the model’s motor actions (key presses 

and mouse clicks) will affect that window.  

 

The proc-display function is called to make the model “look” at the window.  The model 

only encodes the screen when requested with a call to proc-display.  Thus, for the model 

to notice a change to the window proc-display must be called after the change has 

occurred.  This function performs the buffer stuffing of the visual-location buffer if it is 

empty and triggers the re-encoding if the model is attending an item. 

  

The run function can be used to run the model until either it has nothing to do or a 
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specified amount of time has passed. It has one required parameter, the maximum amount 

of time to run the model.   

 

The run-full-time function can be used to run the model for a specific amount of time.  It 

takes one parameter which is the amount of time to run the model. 

 

In addition to those functions there are the correlation and mean-deviation functions 

that you will need to use.  Those calculate the correlation and mean-deviation between 

two lists of numbers. 

 

Here is the function that runs the model through the paired associate task from unit 4 

which should serve as a useful example of presenting a task: 

 
(defun do-experiment-model (size trials) 

  (let ((result nil) 

        (window (open-exp-window "Paired-Associate Experiment" :visible nil))) 

     

    (reset)  

     

    (install-device window) 

     

    (dotimes (i trials)  

      (let ((score 0.0) 

            (time 0.0) 

            (start-time)) 

        (dolist (x (permute-list (subseq *pairs* (- 20 size))))  

           

          (clear-exp-window) 

          (add-text-to-exp-window :text (car x) :x 150 :y 150) 

         

          (setf *response* nil)                    

          (setf *response-time* nil) 

          (setf start-time (get-time)) 

           

          (proc-display) 

          (run-full-time 5) 

           

          (when (equal (second x) *response*)       

            (incf score 1.0)     

            (incf time (- *response-time* start-time)))  

         

          (clear-exp-window) 

          (add-text-to-exp-window :text (second x) :x 150 :y 150) 

           

          (proc-display) 

          (run-full-time 5)) 

         

        (push (list (/ score size) (and (> score 0) (/ time (* score 1000.0)))) 

result))) 

     

    (reverse result)))  

 

It is more complicated than the function you will need for this assignment because it is 

recording response times and averaging the data over multiple runs which your do-

choice-model function will not be doing.  It also calls reset which you should not do in 

your do-choice-model function because you want the model to continue to learn from 
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trial to trial.  You should only call reset at the start of each pass through the whole 

experiment.  Ignoring those complications, it performs a similar sequence of operations to 

those necessary to do this experiment: opening a window, presenting an item of text, 

running the model, clearing the screen, displaying another item of text and then running 

the model again (the code highlighted in red).  Note however that the timing for the 

choice task is not the same as the timing of the paired associate experiment thus you will 

have to do things somewhat differently to accurately replicate the choice task described. 

 

In the choice file provided the do-choice-person function provides the structure for the 

displaying of the items in the choice task: 
 

 

 

(defun do-trial-person () 

  (let ((window (open-exp-window "Choice Experiment" :visible t))) 

     

    (add-text-to-exp-window :text "choose" :x 50 :y 100) 

     

    (setf *response* nil) 

     

    (while (null *response*)         

           (allow-event-manager window)) 

     

    (clear-exp-window) 

     

    (add-text-to-exp-window :text (if (< (act-r-random 1.0) .9) "heads" "tails") 

                            :x 50 :y 100) 

     

    (sleep 1.0) 

    *response*)) 

 

What you must do is write the do-choice-model function that presents the display similar 

to the way that do-choice-person does, but has the appropriate interaction with ACT-R 

(the code colored green handles the interaction for a person doing the task and should not 

appear in your do-choice-model function).  The exact placement of the choose prompt 

and the feedback of heads and tails is not important for the task, and the model should not 

assume anything about their locations i.e. your model should still be able to do the task 

regardless of where on the screen choose and the feedback occur including situations 

where they are not both in the same location. 

 

It is also possible to write the experiment using an event-based style as discussed in the 

unit 4 experiment code document.  That will require a little more work to program 

because it does not analogize as neatly to one of the previous units’ tasks. If you would 

like to write the experiment in that way you should look at the zbrodoff model as an 

example instead of the paired model as described above.  In fact, the different ways to 

write the experiment can actually have an effect on the data fitting for this model because 

they will likely have slightly different timing on the events which will affect the rewards 

received by the productions.  For the paired associate task the style of the experiment was 

not an issue because the lengths of the trials were fixed.  In this case, because the trials 

transition on the response of the model, an event-based experiment will provide a more 

veridical timing sequence because the events of the experiment will not be affected by 

components of the model other than its response.  However, either solution is acceptable 
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for the assignment. 
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