
ACT-R Tutorial 1-May-12 Unit Two

 1

Unit 2: Perception and Motor Actions in ACT-R

2.1 ACT-R Interacting with the World

This unit will introduce some of the mechanisms which allow ACT-R to interact with the world,

which for the purposes of the tutorial will be experiments presented via the computer. This is

made possible with the addition of perceptual and motor modules which were developed by Mike

Byrne, and which were previously referred to as ACT-R/PM but are now an integrated part of the

system. It is a set of modules for ACT-R which provides a model with visual, motor, auditory,

and vocal capabilities as well as the mechanisms for interfacing those modules to the world. The

default mechanisms which we will use allow the model to interact with the computer i.e. process

the visual items presented, press keys and move and click the mouse. Other more advanced

interfaces can be developed, but that is beyond the scope of the tutorial.

2.2 The First Experiment

The demo2 model contains Lisp code to present a very simple experiment and a model that can

perform the task. The experiment consists of a window in which a single letter is presented. The

participant’s task is to press that key. When a key is pressed, the display is cleared and the

experiment ends.

After you load the model you can perform the task yourself if you are running the ACT-R

environment or you are using a Lisp with a GUI for which there is an existing ACT-R interface

(currently MCL, ACL for Windows, and LispWorks). To run the experiment with a human

participant instead of the ACT-R model you need to call the do-demo2 function and pass it the

symbol human. Thus you would enter this:

(do-demo2 'human)

at the Lisp prompt.

A window will appear with a letter (the window may be obscured by your editor or other

windows so you may have to arrange things to ensure you can see everything you want). When

you press a key (while the experiment window is the active window) the experiment window will

clear and that is the end of the experiment. The letter you typed will be returned by the do-

demo2 function.

If you call the do-demo2 function without including the symbol human then the ACT-R model

will be run through the experiment instead of waiting for a person to do the experiment. That will

produce the following trace:

0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL

0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

0.000 PROCEDURAL CONFLICT-RESOLUTION

ACT-R Tutorial 1-May-12 Unit Two

 2

0.000 PROCEDURAL PRODUCTION-SELECTED FIND-UNATTENDED-LETTER

0.000 PROCEDURAL BUFFER-READ-ACTION GOAL

0.050 PROCEDURAL PRODUCTION-FIRED FIND-UNATTENDED-LETTER

0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL

0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION

0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.050 VISION Find-location

0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0

0.050 PROCEDURAL CONFLICT-RESOLUTION

0.050 PROCEDURAL PRODUCTION-SELECTED ATTEND-LETTER

0.050 PROCEDURAL BUFFER-READ-ACTION GOAL

0.050 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION

0.050 PROCEDURAL QUERY-BUFFER-ACTION VISUAL

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER

0.100 PROCEDURAL MOD-BUFFER-CHUNK GOAL

0.100 PROCEDURAL MODULE-REQUEST VISUAL

0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.100 PROCEDURAL CLEAR-BUFFER VISUAL

0.100 VISION Move-attention VISUAL-LOCATION0-0-1 NIL

0.100 PROCEDURAL CONFLICT-RESOLUTION

0.185 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL

0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0

0.185 PROCEDURAL CONFLICT-RESOLUTION

0.185 PROCEDURAL PRODUCTION-SELECTED ENCODE-LETTER

0.185 PROCEDURAL BUFFER-READ-ACTION GOAL

0.185 PROCEDURAL BUFFER-READ-ACTION VISUAL

0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

0.235 PROCEDURAL MOD-BUFFER-CHUNK GOAL

0.235 PROCEDURAL MODULE-REQUEST IMAGINAL

0.235 PROCEDURAL CLEAR-BUFFER VISUAL

0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL

0.235 PROCEDURAL CONFLICT-RESOLUTION

0.435 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL ISA ARRAY

0.435 IMAGINAL SET-BUFFER-CHUNK IMAGINAL ARRAY0

0.435 PROCEDURAL CONFLICT-RESOLUTION

0.435 PROCEDURAL PRODUCTION-SELECTED RESPOND

0.435 PROCEDURAL BUFFER-READ-ACTION GOAL

0.435 PROCEDURAL BUFFER-READ-ACTION IMAGINAL

0.435 PROCEDURAL QUERY-BUFFER-ACTION MANUAL

0.485 PROCEDURAL PRODUCTION-FIRED RESPOND

0.485 PROCEDURAL MOD-BUFFER-CHUNK GOAL

0.485 PROCEDURAL MODULE-REQUEST MANUAL

0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL

0.485 PROCEDURAL CLEAR-BUFFER MANUAL

0.485 MOTOR PRESS-KEY v

0.485 PROCEDURAL CONFLICT-RESOLUTION

0.735 MOTOR PREPARATION-COMPLETE

0.735 PROCEDURAL CONFLICT-RESOLUTION

0.785 MOTOR INITIATION-COMPLETE

0.785 PROCEDURAL CONFLICT-RESOLUTION

0.885 MOTOR OUTPUT-KEY #(4 5)

0.885 PROCEDURAL CONFLICT-RESOLUTION

0.970 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL

0.970 VISION No visual-object found

0.970 PROCEDURAL CONFLICT-RESOLUTION

1.035 MOTOR FINISH-MOVEMENT

1.035 PROCEDURAL CONFLICT-RESOLUTION

1.035 ------ Stopped because no events left to process

Here we see production firing being intermixed with actions of the vision, imaginal, and motor

modules as the model encodes the stimulus and issues a response. If you watch the window while

ACT-R Tutorial 1-May-12 Unit Two

 3

the model is performing the task you will also see a red circle drawn. That is a debugging aid

which indicates the model’s current point of visual attention. It can be turned off if you do not

want to see it. How that is done will be discussed in the parameters section below. You may also

notice that the task always presents the letter “V”. That is also due to a parameter setting in the

model and is done so that it always generates the same trace. You can also change that if you

would like to see how the model performs the task for different letters, and that will also be

described below.

In the following sections we will look at how the model perceives the letter being presented, how

it issues a response, and briefly discuss some parameters in ACT-R.

One thing to note is that from this point on in the tutorial all of the models will be interacting with

an experiment of some form. Thus you will always have to call the appropriate function from the

Lisp prompt to run the experiment. That experiment function will run the model as needed. So,

from this point on in the tutorial you will typically not be using the run command directly to run

the models as was done in unit 1.

2.3 Control and Representation

Before looking at the details of the new buffers and modules, however, there is something

different about this model relative to the models that were used in unit 1 which needs to be

addressed. There are two chunk types created for this model:

(chunk-type read-letters state)

(chunk-type array letter)

The chunk type read-letters has one slot which is called state and will be used to track the current

task state for the model. The other chunk type, array, also has only one slot, which is called letter,

and will hold a representation of the letter which is seen by the model.

In unit 1, we saw that the chunk placed into the goal buffer had slots which held all of the

information relevant to the task – one buffer held all of the information. That represents how

things have typically been done with ACT-R models in the past, but with ACT-R 6.0, a more

distributed representation of the model’s “state” is the preferred means of modeling. Now, we

will use two buffers to hold the information. The goal buffer will be used to hold control state

information – the internal representation of what the model is doing and where it is in the task. In

this model the goal buffer will hold chunks of type read-letters. A different buffer, the imaginal

buffer, will hold the chunk which contains the problem state information, and in this model that

will be a chunk of type array.

2.3.1 The State Slot

In this model, the state slot of the chunk in the goal buffer will maintain information about what

the model is doing. It can then be used to explicitly indicate which productions are appropriate at

any time. This is often done when writing ACT-R models because it is easy to specify and makes

ACT-R Tutorial 1-May-12 Unit Two

 4

them easier to follow. It is however not always necessary to do so, and there are other means by

which the same control flow can be accomplished. In fact, as we will see in a later unit there are

consequences to keeping extra information in the goal chunk. However, because it does make the

production sequencing in a model clearer you will see state slots in many of the models in the

tutorial even if they are not always necessary. As an additional challenge for this unit, you can try

to modify the demo2 model so that it works without needing to maintain an explicit state and thus

not even use the goal buffer at all.

2.4 The Imaginal Module

The first new module we will describe in this unit is the imaginal module. This module has a

buffer called imaginal which is used to create new chunks. These chunks will be the model’s

internal representation of information – its internal image (thus the name imaginal module). Like

any buffer, the chunk in the imaginal buffer can be modified by the productions to build that

representation using RHS modification actions as shown in unit 1.

The important thing about the imaginal buffer is how the chunk first gets into the buffer. Unlike

the goal buffer’s chunk which we have been creating and placing there in advance of the model

starting, the imaginal module will create the chunk for the imaginal buffer in response to a

request from a production.

All requests to the imaginal module through the imaginal buffer are requests to create a new

chunk. The imaginal module will create a new chunk using the chunk-type and any initial slot

values provided in the request and place that chunk into the imaginal buffer. An example of this

is shown in the encode-letter production:

(P encode-letter

 =goal>

 ISA read-letters

 state attend

 =visual>

 ISA text

 value =letter

==>

 =goal>

 state respond

 +imaginal>

 isa array

 letter =letter

)

ACT-R Tutorial 1-May-12 Unit Two

 5

We will explain the details of how the text chunk gets into the visual buffer in the next section.

For now, we are interested in this request on the RHS:

 +imaginal>

 isa array

 letter =letter

This request of the imaginal buffer is asking the imaginal module to create a chunk of type array

and which has the value of the variable =letter in its letter slot. We see the request and its results

in these lines of the trace:

0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

…

0.235 PROCEDURAL MODULE-REQUEST IMAGINAL

…

0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL

…

0.435 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL ISA ARRAY

0.435 IMAGINAL SET-BUFFER-CHUNK IMAGINAL ARRAY0

The production makes the request and automatically clears the buffer at that time as happens for

all buffer requests. Then, we see that the imaginal module reports that it is creating a new chunk

and that chunk is then placed into the buffer.

An important detail of the request to the imaginal module is that the chunk is not immediately

placed into the buffer as a result of the request. It took .2 seconds before the chunk was made

available. This is an important aspect of the imaginal module – it takes time to build a

representation. The amount of time that it takes the imaginal module to create a chunk is a fixed

cost, and the default time is .2 seconds (though that can be changed with a parameter). In addition

to the time cost, the imaginal module is only able to create one new chunk at a time. That does

not impact this model because it is only creating the one new chunk in the imaginal buffer, but

there are times where that can matter. In such situations one may want to verify that the module

is available to create a new chunk and how one does that is described later in the unit.

Thus in this model, the imaginal buffer will hold a chunk which contains a representation of the

letter which the model reads from the screen. For this simple task, that representation is not

strictly necessary because the model could use the information directly from the vision module to

do the task, but for most tasks there will be more information which must be maintained thus

requiring such a chunk to be created. In particular, for this unit’s assignment the model will need

to read multiple letters which must be considered before responding.

2.5 The Vision Module

Many tasks involve interacting with visible stimuli and the vision module provides a model with a

means for acquiring visual information. It is designed as a system for modeling visual attention.

ACT-R Tutorial 1-May-12 Unit Two

 6

It assumes that there are lower-level perceptual processes that generate the representations with

which it operates, but it does not model those perceptual processes in detail. It includes some

default mechanisms for parsing text and other simple visual features from a window and provides

an interface that one can use to extend it when necessary.

The vision module has two buffers. There is a visual buffer that can hold a chunk that represents

an object in the visual scene and a visual-location buffer that holds a chunk which represents the

location of an object in the visual scene. As with all modules, it also responds to queries of the

buffers about the state of the module. It can also respond to more detailed queries which will not

be covered in this unit. Visual interaction is shown in the demo2 model in the two productions

find-unattended-letter and attend-letter.

2.5.1 Visual-Location buffer

The find-unattended-letter production applies whenever the goal buffer’s chunk has a state of

start (which is how the chunk is initially created):

(P find-unattended-letter

 =goal>

 ISA read-letters

 state start

 ==>

 +visual-location>

 ISA visual-location

 :attended nil

 =goal>

 state find-location

)

It makes a request of the visual-location buffer and it changes the goal state to find-location. The

following portion of the trace reflects the actions of this production:

0.050 PROCEDURAL PRODUCTION-FIRED FIND-UNATTENDED-LETTER

0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL

0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION

0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.050 VISION Find-location

0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0

You should ignore the earlier line of the trace related to the vision module that looks like this:

0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

for now. That is the result of a mechanism which we will not discuss until the next unit.

The visual-location request asks the vision module to find the location of an object in its visual

scene (which for this model is the current experiment’s window) that meets the specified

ACT-R Tutorial 1-May-12 Unit Two

 7

requirements, build a chunk to represent the location of that object if one exists, and place that

chunk in the visual-location buffer.

Looking at the trace, these events are a result of that request:

0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION

0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.050 VISION Find-location

0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0

We see the notice of the request and then the automatic clearing of the buffer due to the request

being made by the procedural module. Then the vision module reports that it is finding a location

and then it places that chunk into the buffer. Notice that there was no time involved in handling

the request – all those actions took place at time 0.050 seconds. The visual-location requests

always finish immediately which reflects the idea that there is a perceptual system operating in

parallel that makes these visual features immediately available.

If you step through the model using the Stepper you can use the “Buffer viewer” to see that the

chunk visual-location0-0-1 will be in the visual-location buffer after that last event:

VISUAL-LOCATION0-0-1

 ISA VISUAL-LOCATION

 SCREEN-X 130

 SCREEN-Y 160

 DISTANCE 15.0

 KIND TEXT

 COLOR BLACK

 VALUE TEXT

 HEIGHT 10

 WIDTH 7

 SIZE 0.19999999

There are a lot of slots in a visual-location, but most are not important for this unit, and can be

ignored. The first two, screen-x and screen-y, are the only ones we are concerned with right

now. They encode the exact coordinates of the object in the visual scene. The upper-left corner

of the window is screen-x 0 and screen-y 0. The x coordinates increase from left to right, and the

y coordinates increase from top to bottom. In general, the specific values are not that important

for the model, and do not need to be specified when making a request for a location. There is a

set of descriptive specifiers that can be used for requests on those slots, like lowest or highest, but

again those details will not be discussed until unit 3.

2.5.1.1 The attended request parameter

If we look at the request which was made of the visual-location buffer in the find-unattended-

letter production:

 +visual-location>

ACT-R Tutorial 1-May-12 Unit Two

 8

 ISA visual-location

 :attended nil

we see that in addition to specifying “isa visual-location” it includes “:attended nil” in the request.

However, looking at the chunk-type for a visual-location we find that it does not have a slot called

attended or :attended (calling chunk-type with no parameters will print out all currently defined

chunk types):

VISUAL-LOCATION

 SCREEN-X

 SCREEN-Y

 DISTANCE

 KIND

 COLOR

 VALUE

 HEIGHT

 WIDTH

 SIZE

This :attended specification is called a request parameter. It acts like a slot in the request, but

does not correspond to a slot in the chunk-type specified. A request parameter is valid for any

request to a buffer regardless of the chunk-type specified. Request parameters are used to supply

general information to the module about a request which may not be desirable to have in the

resulting chunk that is placed into the buffer. A request parameter is specific to the particular

buffer and will always start with a “:” which distinguishes it from an actual slot of the chunk-type.

We will discuss a couple different request parameters in this unit and later units as we introduce

more buffers.

For a visual-location request one can use the :attended request parameter to specify whether the

vision module returns the location of an object which the model has previously looked at

(attended to) or not. If it is specified as nil, then the request is for a location which the model has

not attended, and if it is specified as t, then the request is for a location which has been attended

previously. There is also a third option, new. This means that not only has the model not

attended to the location, but also that the object has recently appeared in the visual scene.

The attend-letter production applies when the goal state is find-location, there is a visual-

location chunk in the visual-location buffer, and the vision module is not currently active:

(P attend-letter

 =goal>

 ISA read-letters

 state find-location

 =visual-location>

 ISA visual-location

 ?visual>

 state free

==>

ACT-R Tutorial 1-May-12 Unit Two

 9

 +visual>

 ISA move-attention

 screen-pos =visual-location

 =goal>

 state attend

)

On the LHS of this production are two conditions that have not been seen before. The first is a

test of the visual-location buffer. Notice that the only test on the buffer is the isa slot. All that is

necessary is to make sure that there is a chunk of type visual-location in the buffer. The details

of its slot values do not matter. Then, a query is made of the visual buffer.

2.5.2 Checking a module’s state

On the LHS of attend-letter a query is made of the visual buffer to test that the state of the

vision module is free. All buffers will respond to a query for the module’s state and the possible

values for that query are busy, free, or error as was shown in unit 1. The test of state free is a

check to make sure the buffer being queried is available for a new request. If the state is free,

then it is safe to issue a new request, but if it is busy then it is usually not safe to do so.

Typically, a module is only able to handle one request to a buffer at a time. This is the case for

both the imaginal and visual buffers which require some time to produce a result. Since all

modules operate in parallel it might be possible for the procedural module to select a new

production which makes a new request to a module that is still working on a previous request. If

a production were to fire at such a point and issue another request to a module which is busy and

only able to handle one request at a time, that is referred to as “jamming” the module. When a

module is jammed, it will output a warning message in the trace to let you know what has

happened. What a module does when jammed varies from module to module. Some modules

ignore the new request, whereas others abandon the previous request and start the new one. As a

general practice it is best to avoid jamming modules. Thus, when there is the possibility of

jamming a module one should be sure to query its state before making a request.

Note that we did not query the state of the visual-location buffer in the find-unattended-letter

production before issuing the visual-location request because we know that those requests always

complete immediately and thus the visual-location state is always free. We also did not test the

state of the imaginal module before making the request to the imaginal buffer in the encode-

letter production. In that case, a carefully written model would check such a situation, but

because this model only makes one such request we omitted the check because we knew that the

state would be free at that time. However, that is a risky practice, and it is always a good idea to

query the state in every production that makes a request that could potentially jam a module even

if you know that it will not happen because of the structure of the other productions. Doing so

makes it clear to anyone else who may read the model, and it also protects you from problems if

you decide later to apply that model to a different task where the assumption which avoids the

jamming no longer holds.

ACT-R Tutorial 1-May-12 Unit Two

 10

In addition to the state, there are also other queries that one can make of a buffer. Unit 1

presented the general queries that are available to all buffers. Some buffers also provide queries

that are specific to the details of the module and those will be described as needed in the tutorial.

One can also find all the queries to which a module responds in the reference manual.

2.5.3 Visual buffer

On the RHS of attend-letter it makes a request of the visual buffer which isa move-attention and

it specifies the screen-pos[ition] as the chunk from the visual-location buffer. A request of the

visual buffer for a move-attention is a request for the vision module to move its attention to the

specified location, create a chunk which encodes the object that is there, and place that chunk into

the visual buffer. The following portion of the trace reflects this operation:

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER

0.100 PROCEDURAL MODULE-REQUEST VISUAL

0.100 PROCEDURAL CLEAR-BUFFER VISUAL

0.100 VISION Move-attention VISUAL-LOCATION0-0-1 NIL

0.185 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL

0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0

Note that the request to move-attention is made at time 0.100 seconds but that the encoding does

not complete and result in a chunk being placed into the visual buffer until 0.185 seconds. Those

85 ms represent the time to shift attention and create the visual object. Altogether, counting the

two production firings (one to request the location and one to request the attention shift) and the

85 ms to execute the attention shift and object encoding, it takes 185 ms to create the chunk that

encodes the letter on the screen.

As you step through the model you will find this chunk in the visual buffer after those actions

have occurred:

TEXT0-0

 ISA TEXT

 SCREEN-POS VISUAL-LOCATION0-0-0

 VALUE "v"

 STATUS NIL

 COLOR BLACK

 HEIGHT 10

 WIDTH 7

The chunk is of type text which is a chunk-type created by the vision module for encoding text

from the screen. The screen-pos slot holds the location chunk for that object. The value slot

holds a string that contains the text encoded from the screen, in this case a single letter. The

status slot is empty, and is essentially a free slot which can be used by the model to encode

additional information in that chunk. The color, height, and width slots hold information about

the visual features of the item attended.

After a visual object has been placed in the visual buffer, it can be harvested by a production like

this one:

ACT-R Tutorial 1-May-12 Unit Two

 11

(P encode-letter

 =goal>

 ISA read-letters

 state attend

 =visual>

 ISA text

 value =letter

==>

 =goal>

 state respond

 +imaginal>

 isa array

 letter =letter

)

which makes a request to the imaginal buffer to create a new chunk which will hold a

representation of the letter as was described in the section on the imaginal module.

2.6 Learning New Chunks

This process of seeking the location of an object in one production, switching attention to the

object in a second production, and harvesting the object in a third production is a common style in

ACT-R models. One important thing to appreciate is that this is one way in which ACT-R can

acquire new declarative chunks. Initially the chunks will be in the perceptual buffers, but they

will be stored in declarative memory as a permanent chunk encoding what has been perceived

once those chunks leave the buffers. That process occurs for all buffers – whenever a chunk is

cleared from a buffer it becomes part of the model’s declarative memory. Thus this is also

happening for the imaginal and goal buffers’ chunks when they are cleared.

2.7 Visual Re-encoding

There is another line in the trace of the model which shows the vision module doing something

which will be addressed in this unit:

0.970 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL

0.970 VISION No visual-object found

At time 0.970 seconds there is an encoding that was not the result of a request made by a

production. This is a result of the screen being cleared after the key press at time 0.885 seconds.

When the screen is updated, if the vision module is currently attending to a location it will

automatically re-encode that location to encode any changes that may have occurred there. This

re-encoding takes 85 ms just as an explicit request to attend an item does. If the visual-object

chunk representing that item is still in the visual buffer it will be updated to reflect any changes.

If there is no longer a visual item on the display at the location where the model is attending (as is

the case here) then the trace will show a line indicating that no object was found and the vision

ACT-R Tutorial 1-May-12 Unit Two

 12

module will report a state of error through the visual buffer until there is another successful

encoding (very much like a memory retrieval failure in the retrieval buffer).

2.7.1 Buffer Status

You can see the current query information for the buffers using the “Buffer Status viewer” button

in the Control Panel or by calling the buffer-status command. That will show the required

queries for the buffers along with the current value (either t or nil) for such a query at this time.

Some buffers will also show additional information which can be queried and the documentation

of the module in the reference manual will describe those other queries.

2.7.2 Re-encoding Cont.

This automatic re-encoding process of the vision system requires that you be careful when writing

models that process changing displays for two reasons. The first is that you cannot be guaranteed

that the chunk in the visual buffer will not change in response to a change in the visual display.

The other is because while the re-encoding is occurring, the vision module is busy and cannot

handle a new attention shift. This is one reason it is important to query the visual state before all

visual requests to avoid jamming the vision module since there may be activity other than that

requested explicitly by the productions.

2.7.3 Stop Visually Attending

If you do not want the model to re-encode an item is it possible to make it stop attending to the

visual display. This is done by issuing a clear command to the vision module as an action:

+visual>

 isa clear

This will cause the model to stop attending to any visual items until a new move-attention request

is made and thus it will not re-encode items if the visual scene changes.

2.8 The Motor Module

When we speak of motor actions in ACT-R we are only concerned with hand movements. It is

possible to extend the motor module to other modes of action, but the default mechanism is built

around controlling a pair of hands. In this unit we will only be concerned with finger presses at a

keyboard, but the fingers can also be used to press other devices and the hands can also be used to

move a mouse or other device. Information about these features or extending the motor module is

available in the reference manual and the documentation on extending ACT-R.

The buffer for interacting with the motor module is called the manual buffer. Unlike other

buffers however, the manual buffer will not have any chunks placed into it by its module. It is

ACT-R Tutorial 1-May-12 Unit Two

 13

used only to issue commands and to query the state of the motor module. The manual buffer is

used to request actions be performed by the hands. As with the vision module, you should always

check to make sure that the motor module is free before making any requests to avoid jamming it.

The manual buffer query to test the state of the module works the same as the one described for

the vision module:

?manual>

 state free

That query will be true when the module is available.

The motor module actually has a more complex state than just free or busy because there are

multiple stages in the motor module, and it is possible to make a new request before the previous

one has completed by testing the individual stages. However we will not be discussing that in the

tutorial, and will only test on the overall state i.e. whether the entire module is free or busy. The

respond production from the demo2 model shows the manual buffer in use:

(P respond

 =goal>

 ISA read-letters

 state respond

 =imaginal>

 isa array

 letter =letter

 ?manual>

 state free

==>

 =goal>

 state done

 +manual>

 ISA press-key

 key =letter

)

This production fires when a letter has been encoded, the goal state is respond, and the manual

buffer indicates that the motor module is available. Then a request is made to press the key

corresponding to the letter from the letter slot of the chunk in the imaginal buffer and the state

slot of the chunk in the goal buffer is changed to done. The type of action requested of the hands

is specified in the isa slot of the manual buffer request. The press-key request used here assumes

that the model’s hands are located over the home row on the keyboard and the fingers will be

returned there after the key has been pressed. There are many other requests that can be made of

the hands, but for now, key presses are all we need. If you are interested you can find more

details in the documentation of the motor module in the reference manual. The motor module

actions from the trace that result from this production firing are shown here:

ACT-R Tutorial 1-May-12 Unit Two

 14

0.485 PROCEDURAL PRODUCTION-FIRED RESPOND

0.485 PROCEDURAL MODULE-REQUEST MANUAL

0.485 PROCEDURAL CLEAR-BUFFER MANUAL

0.485 MOTOR PRESS-KEY v

0.735 MOTOR PREPARATION-COMPLETE

0.785 MOTOR INITIATION-COMPLETE

0.885 MOTOR OUTPUT-KEY #(4 5)

1.035 MOTOR FINISH-MOVEMENT

When the production is fired a request is made to press the key, at time 0.485 seconds. However,

it takes 250 ms to prepare the features of the movement (preparation-complete), 50 ms to initiate

the action (initiation-complete), another 100 ms for the key to be struck (output-key), and finally

it takes another 150 ms for the finger to return to the home row (finish-movement). Thus the time

of the key press is at .885 seconds, however the motor module is still busy until time 1.035

seconds. The press-key request does not model the typing skills of an expert typist, but it does

represent one who is able to touch type individual letters competently which is often a sufficient

mechanism for modeling simple tasks.

2.9 Strict Harvesting

Another mechanism of ACT-R 6.0 is displayed in the trace of this model. It is a process referred

to as “strict harvesting”. It states that if the chunk in a buffer is tested on the LHS of a production

(also referred to as harvesting the chunk) and that buffer is not modified on the RHS of the

production, then that buffer is automatically cleared. This mechanism is displayed in the events

of the attend-letter, encode-letter, and respond productions which harvest, but do not modify

the visual-location, visual, and imaginal buffers respectively:

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER

…

0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

…

0.235 PROCEDURAL CLEAR-BUFFER VISUAL

…

0.485 PROCEDURAL PRODUCTION-FIRED RESPOND

…

0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL

By default, this happens for all buffers except the goal buffer, but it is controlled by a parameter

(:do-not-harvest) which can be used to configure which (if any) of the buffers are excluded from

strict harvesting.

If one wants to keep a chunk in a buffer after a production fires without modifying the chunk then

it is valid to specify an empty modification to do so. For example, if one wanted to keep the

chunk in the visual buffer after encode-letter fired we would only need to add an =visual> action

to the RHS:

ACT-R Tutorial 1-May-12 Unit Two

 15

(P encode-letter-and-maintain-visual-chunk

 =goal>

 ISA read-letters

 state attend

 =visual>

 ISA text

 value =letter

==>

 =goal>

 state respond

 +imaginal>

 isa array

 letter =letter

 =visual>

)

2.10 More ACT-R Parameters

The model code description document for unit 1 introduced the sgp command for setting ACT-R

parameters. In the demo2 model the parameters are set like this:

(sgp :seed (123456 0))

(sgp :v t :needs-mouse nil :show-focus t :trace-detail high)

All of these parameters are used to control how the system operates and do not affect the model’s

performance of the task. These settings are used to make working with this model easier, and are

things that you may want to use when working with other models.

The first sgp command is used to set the :seed parameter. This parameter controls the starting

point for the pseudo-random number generator used by ACT-R. Typically you do not need to use

this parameter; however by setting it to a fixed value the model will always produce the same

behavior (assuming that all the variation is attributable to randomness generated using the ACT-R

mechanisms). In this model, that is why the letter “V” is always the one randomly chosen. If you

remove this parameter setting from the model you will see different letters chosen when the

experiment is run. For the tutorial models, we will often set this parameter in the demonstration

model of a unit so that the model you have produces exactly the same trace as presented in the

text, but you should feel free to remove that to further investigate the models.

The second sgp call sets four parameters that are useful for debugging a model. The :v (verbose)

parameter controls whether the trace of the model is printed in the listener. If :v is t (which is the

default value) then the trace is displayed and if :v is set to nil the trace is not printed. It is also

possible to direct the trace to an external file, and you should consult the ACT-R 6.0 reference

manual for information on how to do that if you would like to do so. Without printing out the

trace the model runs significantly faster, and that will be important in later units when we are

running the models through the experiments multiple times to collect data. The :needs-mouse

ACT-R Tutorial 1-May-12 Unit Two

 16

parameter is used to specify whether or not the model needs to control the mouse cursor. In some

Lisp implementations, ACT-R can directly control the mouse cursor and will move it around on

its own as needed. While this is important for the model to perform some tasks, it can be difficult

to work with when it is not needed because you will be fighting with the model for control of the

cursor. So letting the system know whether or not that is necessary and turning it off when not

needed (as is done here by specifying nil) is often a useful setting. The :show-focus parameter

controls whether or not the red visual attention ring is displayed in the experiment window when

the model is performing the task. It is a useful debugging tool, but for some displays you may not

want it because it could obscure other things you want to see. Finally, the :trace-detail parameter,

which was described in the unit 1 experiment description document, is set to high so that all the

actions of the modules show in the trace.

2.11 Unit 2 Assignment

Your assignment is to extend the abilities of the model in demo2 to do a more complex

experiment. The new experiment presents three letters. Two of those letters will be the same.

The participant's task is to press the key that corresponds to the letter that is different from the

other two. The Lisp code to perform the experiment, two initial chunk-types, and an initial goal

chunk are contained in the model unit2-assignment.

To run the experiment, call the new do-unit2 function defined in the assignment model file. Like

the do-demo2 function, providing the symbol human to do-unit2 will cause the task to run you

instead of the model. When you press a key the function will return correct if you pressed the

right key and nil if you pressed the wrong key. This shows what happens when the right key was

pressed:

> (do-unit2 'human)

CORRECT

and this shows the result when the wrong key was pressed:

> (do-unit2 'human)

NIL

Your task is to write a model that always responds correctly when performing the task, and to run

the model through the task you just need to call do-unit2 without including the human symbol.

In doing this you should take the model in demo2 as a guide. It reflects the way to interact with

the imaginal, vision, and motor modules and the productions it contains are similar to the

productions you will need to write. You will also need to write additional productions to read the

other letters and decide which key to press.

You are provided with a chunk-type for the goal, and an initial chunk in the goal buffer. This

chunk-type is the same as the one used in the demo2 model and only contains the control state

information:

(chunk-type read-letters state)

The initial goal provided looks just like the one used in demo2:

ACT-R Tutorial 1-May-12 Unit Two

 17

(goal isa read-letters state start)

There is an additional chunk-type which has slots for holding the three letters which should be

used by the imaginal module:

(chunk-type array letter1 letter2 letter3)

You do not have to use these chunk types to solve the problem. If you have a different

representation you would like to use feel free to do so. There is no one “right” model for the task.

(Nonetheless, we would like your solution to keep any control state information it uses in the goal

buffer and separate from the problem representation in the imaginal buffer.)

In later units we will consider fitting models to data from real experiments. Then, how well the

model fits the data can be used as a way to decide between different representations and models,

but that is not the only way to decide. Cognitive plausibility is another important factor when

modeling human performance – you want the model to do the task like a person does the task. A

model that fits the data perfectly using a method completely unlike a person is probably not a very

good model of the task.

