ACT-R Tutorial
2-Mar-06
Unit Seven

Unit 7: Production Rule Learning

In this unit we will discuss how new production rules are learned. As we will see, new production rules can be acquired by collapsing two production rules that apply in succession into a single rule. In the process one can move knowledge that is stored declaratively into a procedural form. We call this process of forming new production rules production compilation.

7.1 The Basic Idea

A good pair of productions for illustrating production compilation is the two that fire in succession to retrieve a paired associate in the paired model from Unit 4:

(P READ-PROBE

 =GOAL>

 ISA GOAL

 STATE ATTENDING

 ARG1 NIL

 =VISUAL>

 ISA TEXT

 VALUE =VAL

 ==>

 +RETRIEVAL>

 ISA GOAL

 STATE ASSOCIATED

 ARG1 =VAL

 =GOAL>

 ARG1 =VAL

 STATE TESTING)

(P RECALL

 =GOAL>

 ISA GOAL

 ARG1 =VAL

 STATE TESTING

 =RETRIEVAL>

 ISA GOAL

 ARG1 =VAL

 ARG2 =ANS

 ?MANUAL>

 STATE FREE

 ==>

 +MANUAL>

 ISA PRESS-KEY

 KEY =ANS

 =GOAL>

 STATE READ-STUDY-ITEM)

If these two productions fired and retrieved the paired-associate zinc-9, production compilation would combine these two rules into the following single production:

(P PRODUCTION0

 "READ-PROBE & RECALL - GOAL0"

 =GOAL>

 ISA GOAL

 ARG1 NIL

 STATE ATTENDING

 =VISUAL>

 ISA TEXT

 VALUE "zinc"

 ?MANUAL>

 STATE FREE

 ==>

 =GOAL>

 ARG1 "zinc"

 STATE READ-STUDY-ITEM

 +MANUAL>

 ISA PRESS-KEY

 KEY "9")
Essentially, this production combines the work of the two and has built into it the paired associate. In the next two subsections we will describe generally the principles for combining two production rules together and the factors that control how these productions compete in the conflict resolution process.
7.2 Forming a New Production

The basic idea behind forming a new production is to combine the tests in the two conditions into a single set of tests that will recognize when the pair of productions will apply and combine the two actions into a single action that has the effect of both. Since the conditions consist of a set of buffer tests and the actions consist of a set of buffer transformations (either direct changes or new requests) this can be done largely on a buffer-by-buffer basis. The complications occur when there is a buffer transformation in the action of the first production and either a test of that buffer in the condition of the second production or another transformation of the same buffer in the action of the second productions. The productions above illustrate both complications with respect to the goal buffer. First, read-probe sets the state slot of the goal to testing. Then recall tests for that value in the slot. In this case, one can simply omit the setting of state to testing in the composed production. Also, the goal is changed in both productions but the resulting production can just produce the final changes. The result of the overlap in the goal buffer is just a simplification of the production rule but in other cases other responses are necessary.

Because different modules use their buffers in different ways the production compilation process needs to be careful about things. For instance, in the above production we see that the retrieval request was omitted from the newly formed production. However, one probably would not want to do that for a visual buffer request because that would lead to a production that essentially hallucinated visual information. Thus the production compilation mechanism is built around a set of buffer styles and each buffer is classified as one of the styles. For each style there is a set of rules that specify when two productions that use such a buffer can be combined through compilation, and for each style there are a set of rules for how to combine the uses of a buffer. By default there are four styles to which the default buffers of ACT-R are assigned and we will describe those mechanisms in the following sections. One thing to note is that it is possible to add new styles and to adjust the assignment of buffers to styles, but that is beyond the scope of the tutorial.
7.2.1 Motor Style Buffers

Let us first consider the compilation policy for the motor style buffers. The built in buffers that fit this style are the manual and vocal buffers. The main distinction of these buffers is that they never hold a chunk. They are used solely for generating actions and they are only tested through queries. If the first production makes a request of one of these buffers in the right side then it is not possible to compose it with a second production if that production also makes a request of that buffer or queries it for anything other than state busy. If both productions make a request, then there is a danger of jamming, and any queries that are not checking to see if the module is busy in the second production are probably there to prevent jamming in the future, so also block the compilation.
7.2.2 Perceptual Style Buffers

Now let us consider the compilation policy for the perceptual buffers. Of the included buffers, these are the ones considered perceptual visual-location, visual, aural-location, and aural. These buffers will hold chunks generated by their modules. The important characteristic about them is that those chunks are based on information in the external world, and thus are not guaranteed to result in the same request generating the same result at another time. First, like the motor style buffers, it is not possible to compile two productions that both make requests of a particular perceptual style buffer or if the first production makes a request and the second production makes a query for other than busy because of the possibility of jamming. In addition, if the first production makes a request of one of these buffers then it is not possible to compose it with the second production if that production tests the contents of the buffer. This is because of the unpredictable nature of such requests – one does not want to create productions that encapsulate information that is based on external information which may not be valid ever again (at least not for most modeling purposes). The idea is that we only want to create new productions that are “safe”, and by safe we mean that the new production can only match if the productions that it was generated from would match and that its actions are the same as those of its parent productions. Basically, for the default mechanism, we do not want compiled productions to be generated that introduce new errors into the model.

Thus, points where a request is made of a perceptual or motor style buffer are points where there are natural breaks in the compilation process. One cannot compose the production that makes such a request with any later production that operates on the same buffer.

7.2.3 Retrieval Style Buffer

Next let us consider the compilation policy for the retrieval buffer (the only buffer of the retrieval style by default). Because it is an internal buffer (i.e., not subject to the whims of the outside world) it is more predictable and so offers an opportunity for economy. The interesting opportunity for economy occurs when the first production requests a retrieval and the second tests for the successful outcome of that retrieval. In this case, one can delete the request and test and instead specialize the two productions -- by replacing throughout the production any variables in the retrieval request with the constants they are bound to based on the chunk that is retrieved. This was what happened in the example production above where the retrieved paired-associate zinc-9 was built into the new production0. There is one case, however, where it is not possible to drop out the retrieval request. That is when the first production requests a retrieval and the second does a query for a retrieval error. This cannot be composed because declarative memory grows monotonically and it is not safe to predict that in the future there will be a retrieval error. This suggests that it is preferable, if possible, to write production rules that do not depend on retrieval failures.

7.2.4 Goal Style Buffer

The goal buffer is also an internal buffer allowing economies to be achieved, and by default is the only goal style buffer. Below we analyze separately the cases where the first production involves requesting a new goal (the action contains +goal>) and when it does not (the action contains =goal>).

7.2.4.a First Production does not request a new goal.

Let C1 and C2 be the goal buffer conditions for the first and second production and A1 and A2 be the corresponding productions’ goal buffer modification actions. Then, the goal buffer test for the combined production is essentially C1+(C2-A1) where C2-A1 specifies those things tested in C2 that were not created in A1. The modification for the combined production is A2+(A1~A2) where (A1~A2) indicates those things that were in A1 that are not undone by A2. If the second production requests a new goal (+goal>) that can just be kept.

7.2.4.b First production requests a new goal.

This case breaks down into two subcases depending on whether the second production also changes the goal.
The second production does not also request a new goal. In this case the second goal test can be deleted since its satisfaction is guaranteed by the first production. Let C1 be the goal buffer condition of the first production, A1 be the goal buffer modification action of the first production, N1 be the new goal request in the first production, C2 be the goal condition in the second production and A2 be the goal modification of the second production. Then the goal test of the composed production is just C1, the goal modification is just A1, and the new goal request is A2+(N1~A2).

The second production also requests a new goal. In this case the two productions cannot be collapsed because this would amount to skipping over the intermediate goal which would result in a chunk not being created in the new production which was generated by the initial two productions.
7.3 Utility of newly created productions
So far we have discussed how production rules are created but not how they are selected. When a new production New is composed from old productions Old1 and Old2, it is the case that whenever New could apply Old1 could also apply (Note because New might be specialized it does not follow that whenever Old1 could apply New could also apply.) The choice between New, Old1, and whatever other productions might apply will be determined by their utilities as was discussed in the previous unit. You should recall that the utility of a production i is calculated as PiG-Ci where G is the value of the current objective, Pi is the expected probability that i will achieve that objective and Ci is the expected cost to achieve that objective. Also covered in unit 6 was that the values for Pi and Ci can be learned from experience. However, there is no experience associated with the new production New. Therefore, how are these values to be assigned to that production? The probability of a production is defined in terms of its successes and failures as

P =
[image: image1.wmf]Failures

+

Successes

Successes

where Successes and Failures are the number of experienced successes and failures. Therefore, the question of assigning an initial value of P comes down to the question of how to assign initial values to Successes and Failures. Similarly, the cost associated with a production is defined as

C =
[image: image2.wmf]Failures

+

Successes

Efforts

where Efforts is the accumulated time over all the successful and failed applications of this production rule. Therefore, the question of assigning an initial value to C requires that we also assign an initial value to Efforts.

Roughly speaking, the values of P and C for a new production New should be set based on the values of P and C for the production Old1 that it competes with. The simple idea would be that the same estimates for P and C should apply. This is roughly the principle that applies but there are a couple of complications.

What we will do is to have a component in the equation that represents the experience of Old1, and a component that reflects the rule’s own experience. For P this amounts to:

P =
[image: image3.wmf]Failures

+

Successes

+

n

Successes

+

priorP

*

n

The initial value of priorP for a particular new production is 0 and each time that rule is created, the value of priorP is increased so that it approaches the P value of Old1, on the basis of the formula:

[image: image4.wmf])

(

previous

priorP

P

previous

priorP

priorP

-

+

=

Old1

a

This learning system has two parameters, n, which determines how many experiences the priorP value is worth, and which determines the speed of learning, n defaults to 10, and can be set by the :ie (initial experience) parameter. defaults to .2, and can be set with the :alpha parameter.

Similar equations determine the behavior of C:

C =
[image: image5.wmf]Failures

+

Successes

+

n

Efforts

+

priorC

*

n

Here priorC is initially set to the value of G (the :g parameter which defaults to 20), and is update each time the rule is recreated by:

[image: image6.wmf])

(

previous

priorC

C

previous

priorC

priorC

-

+

=

Old1

a

This leaves us with a system that is biased against new productions. However, each time a rule is recreated, its utility will get closer to the utility of the parent rule it competes with, until it is selected due to noise in the utility evaluation. Should the new rule prove to be better than the old, which is often the case, its conflict resolution parameters will come to dominate the old rule and so it will eventually become favored in the conflict resolution.
7.4 Learning from Instruction

Generally, production compilation allows a problem to be solved with fewer productions over time and therefore performed faster. In addition to this speed-up, production compilation results in the drop-out of declarative retrieval as part of the task performance. As we saw in the example in the first section, production rules are produced that just "do it" and do not bother retrieving the intervening information. The classic case of where this applies in experimental psychology is in the learning of experimental instructions. These instructions are told to the participant and initially the participant needs to interpret these declarative instructions. However, with practice the participant will come to embed these instructions into productions that directly perform the task. These productions will be like the productions we normally write to model participant performance in the task. Essentially these are productions that participants learn in the warm-up phase of the experiment. The paired model for this assignment contains an example of a system that interprets instructions about how to perform a paired associate task and learns productions that do the task directly.

In the model we use the following chunks to represent the understanding of the instructions for the paired associate task (in some of our work we have built productions that parse instructions and build these chunks but we are skipping that here):

1. (op1 isa operator pre start action read arg1 fill post stimulus-read)

2. (op2 isa operator pre stimulus-read action associate arg1 filled arg2 fill post recalled)

3. (op3 isa operator pre recalled action test-arg2 arg1 respond arg2 wait)

4. (op4 isa operator pre respond action type arg2 response post wait)

5. (op5 isa operator pre wait action read arg2 fill post new-trial)

6. (op6 isa operator pre new-trial action complete-task post start)
These are represented as operators that tell what to do in various states during the course of a paired-associate trial. They consist of a statement of what that state is in the pre slot and what state will occur after the action in the post slot. In addition, there is an action slot to specify the action and two slots, arg1 and arg2, for possible arguments. So to loosely translate the 7 operators above:

1. Read the word and encode it as the stimulus

2. Try to retrieve an associate to the stimulus

3. Test whether an item has been recalled and if it has not just wait.

4. If an item has been recalled type it and then wait

5. Store the response you read with the stimulus

6. This trial is complete so start the next one
The production system responds to a goal of type “task”. This goal chunk has slots to keep track of the current state, the step it is in treating that state, and the current values of arg1 and arg2. So a state of the goal might be:

GOAL

 ISA TASK

 STATE NEW-TRIAL

 STEP READY

 ARG1 “zinc”

 ARG2 “9”
The production system can retrieve operators and apply them to the current state. In more complicated models we have to deal with things like operator failure but in this simple model we really just need one production rule which is:

(p retrieve-operator

 =goal>

 isa task

 state =state

 step ready

==>

 +retrieval>

 isa operator

 pre =state

 =goal>

 step retrieving-operator)

This production requests the retrieval of an operator relevant to the current state (=state).

The actions (read, associate, test-arg2, type, test-screen-change, complete-task) are all general actions not specific to a paired associate trial. We assume that the participant knows how to do these going into the experiment. This amounts to assuming that there are productions for processing these actions. For instance, the following pair of productions are responsible for reading an item and encoding it into the arg1 slot of the goal:

(p read-arg1

 =goal>

 isa task

 step retrieving-operator

 =retrieval>

 isa operator

 action read

 arg1 fill

 post =state

 =visual-location>

 isa visual-location

 ?visual>

 state free

==>

 +visual>

 isa move-attention

 screen-pos =visual-location

 =goal>

 step attending

 arg1 fill

 state =state)

(p encode-arg1

 =goal>

 isa task

 step attending

 arg1 fill

 =visual>

 isa text

 value =val

==>

 =goal>

 arg1 =val

 step ready)
The first production responds to the retrieval of the operator and requests an encoding of the item. It also changes the state in the goal to the post-operator state. The second production encodes the word and sets the goal to be ready to retrieve the operator relevant to the next state.

The paired-learning model responds to the same task as the paired model you had for Unit 4. However, rather than having specific productions for doing the task it interprets these operators that represent the instructions for doing this task. For reference, here is the data that is being modeled again:

	Trial
	Accuracy
	Latency

	1
	.000
	0.000

	2
	.526
	2.156

	3
	.667
	1.967

	4
	.798
	1.762

	5
	.887
	1.680

	6
	.924
	1.552

	7
	.958
	1.467

	8
	.954
	1.402

The model can be run either with production compilation on or off. To run it with production compilation off, set the :epl parameter to nil. The following is a run without production compilation:
? (collect-data 10)

Latency:

CORRELATION: 0.989

MEAN DEVIATION: 0.183

Trial 1 2 3 4 5 6 7 8

 0.000 2.255 2.009 1.933 1.856 1.705 1.763 1.695

Accuracy:

CORRELATION: 0.988

MEAN DEVIATION: 0.079

Trial 1 2 3 4 5 6 7 8

 0.000 0.355 0.590 0.755 0.845 0.850 0.890 0.930

When it is run with :epl t, the following is the result:
? (collect-data 10)

Latency:

CORRELATION: 0.997

MEAN DEVIATION: 0.068

Trial 1 2 3 4 5 6 7 8

 0.000 2.182 1.927 1.727 1.558 1.498 1.380 1.310

Accuracy:

CORRELATION: 0.993

MEAN DEVIATION: 0.062

Trial 1 2 3 4 5 6 7 8

 0.000 0.400 0.625 0.725 0.870 0.885 0.895 0.915
As can be seen, whether production compilation is off or on has relatively little impact on the accuracy of recall but turning it on greatly increases the speed-up over trials in recall time. This is because we are cutting out productions and retrievals.

If you set the :pct (production compilation trace) parameter to t (and you will also need to set :v to t) you will see the system print out the new productions as they are compiled or the reason why two productions could not be compiled. For instance, the following is a fragment of the trace when we executed the command (do-experiment 1 1) -- to study one paired-associate for 1 trials with production compilation turned on.

 0.285 PROCEDURAL PRODUCTION-FIRED RETRIEVE-OPERATOR

Production Compilation process started for RETRIEVE-OPERATOR

 Production ENCODE-ARG1 and RETRIEVE-OPERATOR are being composed.

 New production:

(P PRODUCTION1

 "ENCODE-ARG1 & RETRIEVE-OPERATOR"

 =GOAL>

 ISA TASK

 ARG1 FILL

 STEP ATTENDING

 STATE =STATE

 =VISUAL>

 ISA TEXT

 VALUE =VAL

 ==>

 +RETRIEVAL>

 ISA OPERATOR

 PRE =STATE

 =GOAL>

 ARG1 =VAL

 STEP RETRIEVING-OPERATOR

)

 Current values of priorP: 0.200000 priorC:18.000000

Parameters for production PRODUCTION1:

 :Effort 0.050

 :Creation-Time 0.285

 :P 0.273

 :C 16.368

 :PG-C -10.914

 :Successes 1.000

 :Failures 0.000

 :Efforts 0.050

 :Success NIL

 :Failure NIL

The production that was learned, Production1, is a compilation of two of the original productions:

(p encode-arg1

 =goal>

 isa task

 step attending

 arg1 fill

 =visual>

 isa text

 value =val

==>

 =goal>

 arg1 =val

 step ready)

and

(p retrieve-operator

 =goal>

 isa task

 state =state

 step ready

==>

 +retrieval>

 isa operator

 pre =state

 =goal>

 step retrieving-operator)

The first production, Encode-arg1, encodes the stimulus, and sets the goal to retrieve the next operator. This is followed by Retrieve-operator, which makes the retrieval request. The compiled production is particularly straight forward –its condition is just the condition of the first and its action combines the actions of the two.

It is worth understanding how the parameters of this new production are calculated. The value of is .2 (the default). Thus, using our prior equation the priorP is calculated:

[image: image7.wmf]

priorP

=

priorP

previous

+

a

(

Old1

P

-

priorP

previous

)

=

0

+

.

2

(

1

-

0

)

=

.

2

Since the old production has probability 1 and new productions are assumed to start with probability 0. This then need to be combined with successes and failures (which are 1 success and 0 failures by default for the new production) according to the earlier formula:

[image: image8.wmf]

P

=

n

*

 priorP

+

Successes

n

+

Successes

+

 Failures

=

10

*

.

2

+

1

10

+

1

+

0

=

.

273

Similarly, PriorC is calculated:

[image: image9.wmf]

priorC

=

priorC

previous

+

a

(

Old1

C

-

priorC

previous

)

=

20

-

.

2

(

10

-

20

)

=

18

Since the old production has a cost of 10 and new productions are assumed to start with a cost of G (which is 20 by default). This is combined with effort (.05 by default) according to the prior formula:

[image: image10.wmf]368

.

16

0

1

10

05

.

18

*

10

Failures

+

Successes

+

n

Efforts

+

priorC

*

n

=

+

+

+

=

=

C

Since G is 20, the utility for production1 is -10.914. Therefore, this production will certainly not be selected at this time since the production it competes with has a utility of +10. Thus it will need to be recreated a number of times before it will become possible to be chosen in conflict resolution. The speed of this learning is determined by the setting of . If it is set to 1, productions will typically get very good values immediately and be tried on the first opportunity. If you do that and run (do-experiment 1 5) you will discover in just 3 trials it learns:

(P PRODUCTION19

 "PRODUCTION13 & PRODUCTION15 - OP4"

 =GOAL>

 ISA TASK

 STEP RETRIEVING-OPERATOR

 ARG2 =VAL

 =RETRIEVAL>

 ISA OPERATOR

 ACTION TEST-ARG2

 ARG1 RESPOND

 ?MANUAL>

 STATE FREE

 ==>

 +RETRIEVAL>

 ISA OPERATOR

 PRE WAIT

 =GOAL>

 STATE WAIT

 STEP RETRIEVING-OPERATOR

 +MANUAL>

 ISA PRESS-KEY

 KEY =VAL)

This production corresponds to the respond state and requests the keying of the response and after one more trial it will combine this production with another learned production, production17, to produce:
(P PRODUCTION21

 "PRODUCTION17 & PRODUCTION19 - OP3"

 =GOAL>

 ISA TASK

 ARG1 FILL

 STATE STIMULUS-READ

 STEP ATTENDING

 =VISUAL>

 ISA TEXT

 VALUE "zinc"

 ?MANUAL>

 STATE FREE

 ==>

 +MANUAL>

 ISA PRESS-KEY

 KEY "9"

 =GOAL>

 ARG1 "zinc"

 ARG2 "9"

 STATE WAIT

 STEP RETRIEVING-OPERATOR

 +RETRIEVAL>

 ISA OPERATOR

 PRE WAIT)
This production basically types 9 in response to the stimulus zinc. However, with normal settings of , there are not near enough trials to get to this level of automaticity.

7.5 Assignment

Your assignment is to make a model that learns the past tense of verbs in English. The learning process of the English past tense is characterized by the so-called U-shaped learning in the learning of irregular verbs. That is, at a certain age children inflect irregular verbs like “to break” correctly, so they say “broke” if they want to use the past tense. But at a later age, they overgeneralize, and start saying “breaked”. At an even later stage they again inflect irregular verbs correctly. Some people, such as Pinker and Marcus, interpret this as evidence that a rule is learned to create regular past tense (add –ed to the stem). According to Pinker and Marcus, after this rule has been learned, it is overgeneralized so that it will also produce regularized versions of irregular verbs.

Part of the model is already given in the file past-tense. The assignment is to make a model that learns both the regular rule for the past tense, and particular rules for particular irregular verbs. So eventually it should learn rules like:

IF the goal is to make the past tense of a verb

THEN copy that verb and add –ed

IF the goal is to make the past tense of the verb have

THEN the past tense is had

The code that is provided does two things. It adds correct past tenses to declarative memory, reflecting the fact that a child hears and then encodes correct past tenses in the environment. It also creates goals to generate the past tense of a verb and then runs the model to generate one.

Here are examples of correctly formed past tenses:

WORD2323

isa past-tense

verb have

stem had

suffix blank

status nil

is a correct encoding of the irregular verb have and:

WORD4323

isa past-tense

verb use

stem use

suffix ed

status nil

is a correct encoding of the regular verb use.

A goal to generate a new past tense will look like this:

GOAL332

isa past-tense

verb get

stem nil

suffix nil

status start

The verb of which a past tense form is desired is in the verb slot. Your model has to fill in the stem and suffix slots of the goal to indicate the past tense form of the verb and set the status slot to done. Then, one of the three production rules provided with the model will fire to simulate the final encoding and “use” of the word. There are three possible cases. The first is an irregular inflection, which corresponds to a suffix that is marked explicitly as blank. There is a regular inflection, in which the stem is the same as the verb and the suffix is ed, and finally, there is a non-inflection case, in which both the stem and suffix are nil. The non-inflection case applies when the model cannot come up with a past tense at all, either because it has no example to retrieve or no rule or strategy to come up with anything else. The regular case and the non-inflection case each receive a cost penalty in the form of an additional effort added to the rule. The extra effort added to the regular rule reflects the fact that regular forms would take longer on average to say, and the penalty on the non-inflection rule reflects the fact that the past tense has to be indicated by some other method, for example by adding “yesterday” or some other explicit reference to time when it is actually used.

One important thing to notice is that all three of the provided productions are marked as a success. The model receives no feedback as to whether the past tenses it produces are correct – any past tense is considered a success. The only feedback it has are the correctly constructed verbs that it hears from the environment.

You can run the model with the do-it command. It takes as an argument the number of words you want the model to generate:

(do-it 5000)

As optional parameters you can specify whether or not you want ACT-R to be verbose (:v t), or whether ACT-R should continue with the run you started in an earlier do-it call with (:cont t).

During the run, the simulation will display four numbers on each row, reflecting the results of the last 100 words. The first number is the proportion correct of irregular verbs. The second number is the proportion of irregular verbs that are inflected regularly. An increase in this number indicates a regular rule is active i.e. irregular verbs are having ed added to them. The third number is the proportion of irregular verbs that are not inflected at all. The fourth number is the proportion of inflected irregular verbs that are inflected correctly (the non-inflected verbs are not counted for this measure). It is in this last column that you should see a U-shape.

It often requires much more than 5000 trials to see the effect, and taking 20000 to 40000 trials is not uncommon. The :cont (continue) option in the do-it function allows you to run more trials without resetting the model. After the model is done, the report-irreg function gives a report where results are summarized for 1000 trials at a time. The 100 trial summaries displayed during the do-it function run are more to see the model is still doing things, and in what direction the results are going. If you have loaded the ACT-R environment then you can pass t as a parameter to the report-irreg function to have it generate a graph of the data. What you are looking for from the model is a graph that looks something like this:

[image: image11.png]
It starts out with a high percentage correct, dips down, and then goes back up. That is the U-shaped learning result.

This model differs from other models in the tutorial in that it does not model a particular experiment, but rather some long term development. This has a couple of consequences for the model. One of those is that using perceptual/motor modules does not contribute much to the objective of the model. Thus things like the "hearing" of past tenses and the eventual generation of the verb in speech are not modeled for the purpose of this exercise. It could be modeled, but it is not what the model and exercise are about. Therefore explicitly adding already processed perceived past tenses to declarative memory and just adding extra time for generation of certain classes of verb tenses serves as a reasonable compromise.

The other big consequence is that runs of the model may differ considerably. On the one hand this is not so bad, as children also differ with respect to U-shaped learning. One reason for the relative unpredictability is the fact that this simulation runs with a very limited vocabulary (extending the vocabulary results in a model that runs extremely slowly which is not beneficial as an exercise), but the effect of the noise in the model also has an impact that can create noticeable effects over the long term running of the model. This also makes comparing this model to data difficult, and hard data on the phenomenon are scarce, although the phenomenon of the U-shape is reported often. A few children have been followed in a longitudinal study, and there is a spreadsheet included with the unit materials (data.xls) that shows those results for comparison.

So, in terms of the assignment the objective is to write a model that learns the appropriate productions for producing past tenses. There is no parameter adjustment or data fitting required. The key to a successful model is to implement both a retrieval strategy and a simple analogy strategy. The model can either remember a correct past tense or the model attempts to generate a past tense based on another retrieved verb. The productions you write should make no explicit reference to either ed or blank because that is what the model is to eventually learn i.e. you do not write a production that says add ed, but through the compilation mechanism such a production is created. Although the experiment code is only outfitted with a limited set of words, the frequency that the words are presented to the model is in accordance with the frequency they appear in real life. So, if your model learns the proper productions it should generate the U-shaped learning automatically, but not necessarily on every run.
15

_1087972033

_1122385284.unknown

_1122385285.unknown

_1179853914.unknown

_1122384938

_1122385283.unknown

_1052559186

_1056886153

_1052558424.unknown

_1052558607.unknown

