
Procedural Learning Modeling Issues

This text will cover some of the issues that can arise when working with utility learning and

production compilation and describe ways that the Environment tools may be used to help.

Models which use these mechanisms often do so in conjunction with declarative learning and

also often require running for many trials for the learning effects to show up. Because of that,

such models can be more difficult to analyze and debug since one may need to investigate both

declarative and procedural issues over long runs. To better demonstrate things for this text we

will be using two simple tasks which are focused only on the procedural issues involved. The

mechanisms described here can be used in conjunction with those described previously for

declarative memory, and we will also indicate ways of dealing with longer runs.

Utility Learning

First we will look at a model which is using utility learning in a task similar to the choice

experiment from unit 6 found in the “utility-learning-issues.lisp” file. We do not have any

experimental data which we will be fitting with this model, but we do have an expectation that it

will learn which choice is better. That learning should show up as a higher utility for the

production which chooses the better response and we will look for that as the model runs.

The Task

In this task the model must choose one of two options, either A or B, within five seconds. Then

after the five seconds have passed the model will either be presented with the correct response

for this trial or informed that no answer will be provided for the trial. The feedback will be

presented for two seconds and then the next trial will begin. Thus, each trial lasts exactly seven

seconds. For this task, choice A will be reported as correct on 60% of the trials, 20% of the trials

will indicate choice B as correct, and 20% of the trials will provide no feedback. Thus, we will

expect the model to learn to choose option A more frequently than option B.

Because this task only has to run with the model it has been implemented by directly

manipulating the chunks in the model’s goal and imaginal buffers. The task will put a chunk in

the goal buffer indicating that it is time to choose and then put a chunk in the imaginal buffer

with the feedback five seconds later. Two seconds after that it will provide another goal chunk

indicating the next choice time, and that process will repeat for as long as the model runs. The

task operates by scheduling the actions to occur for the model, and does not require calling a

function other than run. There is no data collected or results reported for the task, but the choice

and feedback actions will be shown in the medium detail trace for reference.

The Model

Because the task is directly modifying the chunks in the buffers, the model can simply consist of

five productions. Two productions respond to the goal buffer chunk indicating that it is time to

choose, one for each choice, and there are three productions which process the feedback

provided in the imaginal buffer. The feedback handling productions consist of one which fires

when the model chose correctly, one which fires when it chose incorrectly, and one which fires

when there is no feedback for the trial. We will not show the productions here, but there is

nothing new or unusual about them so they should be easy to understand by looking at the model

file. The only learning mechanism enabled in the model is utility learning and the model has

been given some noise in utilities with these parameter settings:

(sgp :esc t :ul t :egs .5)

The utility learning rate parameter :alpha is not set so it will have the default value of .2. To

allow the model to learn, the productions which fire for matching and mismatching feedback are

given the following rewards:

 (spp response-matches :reward 4)

 (spp response-doesnt-match :reward 0)

The productions are not given any particular starting utilities. Therefore, they will all start with

the default utility of 0. That is all there is to the model so now we will move on to testing it.

Testing the Model

When we load the model there are no warnings or errors so we can start running it now. One

thing that we could do would be to just run it for several trials and then see how the utilities have

changed by that point. If the choose-a production has a higher utility than choose-b we might

then consider the model done. However, as has been mentioned in the other testing texts, it is

always better to start small and make sure to understand how the model is working and learning

before moving on to look at the higher level results.

As a first test we should run a couple of trials and make sure the model is operating as we would

expect. Here is the trace from the first trial (just under seven seconds):

> (run 6.95)

 0.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 5.000 NONE SHOW-RESULT A

 5.000 PROCEDURAL CONFLICT-RESOLUTION

 5.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-MATCHES

 5.050 UTILITY PROPAGATE-REWARD 4

 5.050 PROCEDURAL CLEAR-BUFFER GOAL

 5.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 5.050 PROCEDURAL CONFLICT-RESOLUTION

 6.950 ------ Stopped because time limit reached

We see the model choose A, the feedback presented is that A is the correct choice, then the

model fires the response-matches production and a reward of 4 is applied. That looks good, but

we should check a couple more trials to make sure. Here is the trace for the next two:

> (run 14)

 7.000 NONE PRESENT-CHOOSE

 7.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL REQUESTED NIL

 7.000 PROCEDURAL CONFLICT-RESOLUTION

 7.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A

 7.050 PROCEDURAL CONFLICT-RESOLUTION

 12.000 NONE SHOW-RESULT NIL

 12.000 PROCEDURAL CONFLICT-RESOLUTION

 12.050 PROCEDURAL PRODUCTION-FIRED UNKNOWN-RESPONSE

 12.050 PROCEDURAL CLEAR-BUFFER GOAL

 12.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 12.050 PROCEDURAL CONFLICT-RESOLUTION

 14.000 NONE PRESENT-CHOOSE

 14.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL REQUESTED NIL

 14.000 PROCEDURAL CONFLICT-RESOLUTION

 14.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-B

 14.050 PROCEDURAL CONFLICT-RESOLUTION

 19.000 NONE SHOW-RESULT A

 19.000 PROCEDURAL CONFLICT-RESOLUTION

 19.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-DOESNT-MATCH

 19.050 UTILITY PROPAGATE-REWARD 0

 19.050 PROCEDURAL CLEAR-BUFFER GOAL

 19.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 19.050 PROCEDURAL CONFLICT-RESOLUTION

 20.950 ------ Stopped because time limit reached

There we see trials with the model responding to both the lack of feedback and a trial when it

responds incorrectly. Since that all looks good we should now look at how the utility learning is

progressing as it runs.

Because this is a small model it should be easy to follow the learning by simply enabling the

utility learning trace and watching the values change. If it were a larger model however that

might not be as tractable, and we might need to use some of the environment tools to help as will

be discussed later. For now, we will just enable the utility learning trace by adding this setting to

the model’s parameters, :ult t, saving and reloading. After making that change here is the trace

from the first trial:

> (run 6.95)

 0.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 5.000 NONE SHOW-RESULT A

 5.000 PROCEDURAL CONFLICT-RESOLUTION

 5.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-MATCHES

 5.050 UTILITY PROPAGATE-REWARD 4

 Utility updates with Reward = 4.0 alpha = 0.2

 Updating utility of production CHOOSE-A

 U(n-1) = 0.0 R(n) = -1.05 [4.0 - 5.05 seconds since selection]

 U(n) = -0.21

 Updating utility of production RESPONSE-MATCHES

 U(n-1) = 0.0 R(n) = 3.95 [4.0 - 0.05 seconds since selection]

 U(n) = 0.79

 5.050 PROCEDURAL CLEAR-BUFFER GOAL

 5.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 5.050 PROCEDURAL CONFLICT-RESOLUTION

 6.950 ------ Stopped because time limit reached

Looking at the change in utility for the production choose-a on this trial indicates that there

seems to be a problem. The model chose A and the feedback provided indicated that A was the

correct choice which lead to a positive reward, but the utility of the choose-a production

decreased from 0 to -0.21. The reason for that is because the effective reward a production

receives is discounted by the time that passed between the production’s selection and when the

reward is received. In this task there are 5.05 seconds between the choice and the reward. Thus,

with a reward of 4 being provided on a correct response we end up penalizing the production.

Generally, that is not a good situation since it means that the model would be less likely to

choose A after positive feedback. If we want the reward to have a positive effect then we should

make sure that it is large enough to do so considering the amount of time that passes. To fix that

for this model we will adjust the reward provided for being correct to 6 instead of 4:

 (spp response-matches :reward 6)

After making that change and saving the model here is the trace of the first trial now:

> (run 6.95)

 0.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 5.000 NONE SHOW-RESULT A

 5.000 PROCEDURAL CONFLICT-RESOLUTION

 5.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-MATCHES

 5.050 UTILITY PROPAGATE-REWARD 6

 Utility updates with Reward = 6.0 alpha = 0.2

 Updating utility of production CHOOSE-A

 U(n-1) = 0.0 R(n) = 0.9499998 [6.0 - 5.05 seconds since selection]

 U(n) = 0.18999997

 Updating utility of production RESPONSE-MATCHES

 U(n-1) = 0.0 R(n) = 5.95 [6.0 - 0.05 seconds since selection]

 U(n) = 1.1899999

 5.050 PROCEDURAL CLEAR-BUFFER GOAL

 5.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 5.050 PROCEDURAL CONFLICT-RESOLUTION

 6.950 ------ Stopped because time limit reached

We now see a positive change in the choose-a production’s utility after choosing it correctly on

this trial.

Had we just been looking at the model’s performance over a long run we may not have noticed

this oddity in the model’s learning pattern. For example, had we just run the model for 100 trials

from the initial state and looked at the resulting utilities we would have seen something like this:

> (run 700)

700.0

2089

NIL

> (spp choose-a choose-b)

Parameters for production CHOOSE-A:

 :utility -4.107

 :u -4.405

 :at 0.050

 :reward NIL

Parameters for production CHOOSE-B:

 :utility -5.604

 :u -5.618

 :at 0.050

 :reward NIL

(CHOOSE-A CHOOSE-B)

Production choose-a has a higher utility than choose-b which means that the model will be

choosing A more often than B. So, even with a successful choice penalizing the model, in the

long term the model still gets to the expected result since presumably the incorrect trials are

penalized even more, but if we are concerned with how it gets there, which often is the reason for

creating a model, we should pay attention to the details along the way. In this case, the negative

utilities may have been an indication that there was a problem, but if instead of looking at the

utilities we had been looking at response data like choice percentages we may not have noticed at

all.

Now that we have the first trial operating in a reasonable manner we will look at the next trial.

Here is the trace for the second trial:

> (run 7)

 7.000 NONE PRESENT-CHOOSE

 7.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL REQUESTED NIL

 7.000 PROCEDURAL CONFLICT-RESOLUTION

 7.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A

 7.050 PROCEDURAL CONFLICT-RESOLUTION

 12.000 NONE SHOW-RESULT NIL

 12.000 PROCEDURAL CONFLICT-RESOLUTION

 12.050 PROCEDURAL PRODUCTION-FIRED UNKNOWN-RESPONSE

 12.050 PROCEDURAL CLEAR-BUFFER GOAL

 12.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 12.050 PROCEDURAL CONFLICT-RESOLUTION

 13.950 ------ Stopped because time limit reached

The model chooses A again but this time there is no feedback. Because the unknown-response

production provides no reward there is no change to the utility of the choose-a production. So

we will now look at the next trial:

> (run 7)

 14.000 NONE PRESENT-CHOOSE

 14.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL REQUESTED NIL

 14.000 PROCEDURAL CONFLICT-RESOLUTION

 14.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-B

 14.050 PROCEDURAL CONFLICT-RESOLUTION

 19.000 NONE SHOW-RESULT A

 19.000 PROCEDURAL CONFLICT-RESOLUTION

 19.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-DOESNT-MATCH

 19.050 UTILITY PROPAGATE-REWARD 0

 Utility updates with Reward = 0.0 alpha = 0.2

 Updating utility of production CHOOSE-A

 U(n-1) = 0.18999997 R(n) = -12.05 [0.0 - 12.05 seconds since selection]

 U(n) = -2.258

 Updating utility of production UNKNOWN-RESPONSE

 U(n-1) = 0.0 R(n) = -7.05 [0.0 - 7.05 seconds since selection]

 U(n) = -1.4100001

 Updating utility of production CHOOSE-B

 U(n-1) = 0.0 R(n) = -5.05 [0.0 - 5.05 seconds since selection]

 U(n) = -1.0100001

 Updating utility of production RESPONSE-DOESNT-MATCH

 U(n-1) = 0.0 R(n) = -0.05 [0.0 - 0.05 seconds since selection]

 U(n) = -0.010000001

 19.050 PROCEDURAL CLEAR-BUFFER GOAL

 19.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 19.050 PROCEDURAL CONFLICT-RESOLUTION

 20.950 ------ Stopped because time limit reached

This time the model chooses B, but the feedback indicates that A was the correct choice. The

response-doesnt-match production fires and provides a reward of 0 which gets propagated back.

However, in addition to penalizing the choose-b production as we would expect it also penalizes

the choose-a production. That happens because the reward affects all productions which have

fired since the previous reward, which occurred after response-matches fired on the first trial.

Because there was no reward provided on the second trial when unknown-response fired this

reward gets applied to the productions for that trial as well.

To prevent that from happening we will have to provide a reward on the trials without any

feedback when unknown-response fires. The question becomes how much reward should we

provide when there is no feedback? As always, there is no single answer to such a question and

depending on the task and hypothesis behind the model, values anywhere between the positive

and negative feedback may be appropriate. Alternatively, instead of picking a value, there is a

special option available for the reward which we will describe and use here.

The utility learning mechanism provides the option of specifying a null reward. Such a reward

does not adjust the utilities of any productions, but it does cause the marker for when the last

reward was provided to be updated. That allows the modeler to indicate that there was nothing

to be learned since the last reward was provided. As with choosing which reward values to

provide, the modeler will have to decide if a null reward value is appropriate for any particular

situation.

There are two ways to provide a null reward to the model. If one is providing rewards to the

model automatically with the firing of productions, as is done in this example, then setting the

reward value for a production to t instead of a number will make that production provide a null

reward. If instead one is using the trigger-reward command to provide rewards to the model

directly then a value of nil instead of a number will result in a null reward being generated.

Here is the setting we will add to the model to provide a null reward when there is no feedback

for a trial:

(spp unknown-response :reward t)

By providing a null reward when the unknown-response production fires it will stop the reward

from the next trial from propagating back past that point.

After saving that change in the model and reloading it here is what we see now for the utility

update on the second and third trials:

> (run 7)

 7.000 NONE PRESENT-CHOOSE

 7.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL REQUESTED NIL

 7.000 PROCEDURAL CONFLICT-RESOLUTION

 7.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A

 7.050 PROCEDURAL CONFLICT-RESOLUTION

 12.000 NONE SHOW-RESULT NIL

 12.000 PROCEDURAL CONFLICT-RESOLUTION

 12.050 PROCEDURAL PRODUCTION-FIRED UNKNOWN-RESPONSE

 12.050 UTILITY PROPAGATE-REWARD NIL

 Null reward clears utility learning history.

 12.050 PROCEDURAL CLEAR-BUFFER GOAL

 12.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 12.050 PROCEDURAL CONFLICT-RESOLUTION

 13.950 ------ Stopped because time limit reached

> (run 7)

 14.000 NONE PRESENT-CHOOSE

 14.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL REQUESTED NIL

 14.000 PROCEDURAL CONFLICT-RESOLUTION

 14.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-B

 14.050 PROCEDURAL CONFLICT-RESOLUTION

 19.000 NONE SHOW-RESULT A

 19.000 PROCEDURAL CONFLICT-RESOLUTION

 19.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-DOESNT-MATCH

 19.050 UTILITY PROPAGATE-REWARD 0

 Utility updates with Reward = 0.0 alpha = 0.2

 Updating utility of production CHOOSE-B

 U(n-1) = 0.0 R(n) = -5.05 [0.0 - 5.05 seconds since selection]

 U(n) = -1.0100001

 Updating utility of production RESPONSE-DOESNT-MATCH

 U(n-1) = 0.0 R(n) = -0.05 [0.0 - 0.05 seconds since selection]

 U(n) = -0.010000001

 19.050 PROCEDURAL CLEAR-BUFFER GOAL

 19.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 19.050 PROCEDURAL CONFLICT-RESOLUTION

 20.950 ------ Stopped because time limit reached

On the second trial it now reports that there is a null reward which clears the history and sets a

new marker for the last reward given. Then on the third trial only the choose-b and response-

doesnt-match productions get an update to their utilities.

After that change the model seems to be working as we would expect now – it gets a positive

reward for guessing correctly, no change to rewards when there is no feedback, and a negative

reward when it guesses incorrectly. If we check the utility values of the choose-a and choose-b

productions now we see that the :u value for choose-a is greater than the :u value for choose-b:

> (spp choose-a choose-b)

Parameters for production CHOOSE-A:

 :utility -0.166

 :u 0.190

 :at 0.050

 :reward NIL

Parameters for production CHOOSE-B:

 :utility 0.662

 :u -1.010

 :at 0.050

 :reward NIL

(CHOOSE-A CHOOSE-B)

As a test, we can run the model for several more trials and look at the results, and we will turn

off the trace using with-parameters so it runs faster:

> (with-parameters (:v nil)

 (run (* 7 20)))

140

421

NIL

> (spp choose-a choose-b)

Parameters for production CHOOSE-A:

 :utility -1.523

 :u -0.646

 :at 0.050

 :reward NIL

Parameters for production CHOOSE-B:

 :utility -0.975

 :u -2.982

 :at 0.050

 :reward NIL

(CHOOSE-A CHOOSE-B)

We see that choose-a still has the greater U(n) value, though both are negative. Before

considering why they are both negative, we will compute the probability that the model will fire

choose-a instead of choose-b at this time using the equation from unit 6 of the tutorial:

965.)(Pr

2*5.

982.2

2*5.

646.0

2*5.

646.0

ee

e
achooseobability

That is likely a little higher than we would want if we were trying to fit human performance, but

without any explicit data to fit we will not adjust that in this model.

Now, as for why the values are negative, if we look back at the traces we will see that the penalty

for an incorrect response is -5.05 whereas the benefit for a correct response is only +0.95. That

much larger penalty for being incorrect appears to be what is driving the values negative, but we

will look into that further below to make sure there is not some other issue. Because the utility

values are only meaningful in comparison among competing productions, having negative values

is not in and of itself a bad thing that always needs to be corrected. One situation where that

might be an issue however is if one is using production compilation and has left the default

utility value for newly learned productions at 0. If the original productions have negative

utilities then the newly learned productions with utilities of 0 will be immediately more likely to

be selected. That situation is not recommended and one would likely want to adjust the starting

utilities of the original productions, adjust the initial utility for new productions, or adjust the

rewards that are provided so that a more gradual introduction of the newly learned productions

occurs. Since this model is not using production compilation, as long as we do not find

something wrong with how it is operating we will not attempt to adjust the rewards or other

parameters to eliminate the negative utilities.

Using the utility trace to investigate the changes to the utility of the productions works alright

when dealing with a few trials in a small model, but if the task requires lots of trials or has lots of

competing productions then reading through the trace can be difficult and time consuming. The

“Production History” and “Production Graph” tools in the Environment, which were introduced

in the unit 3 modeling text, may help to investigate utility issues for longer runs and we will look

at doing so below. Using those tools may not always explain what has happened, but when they

do not they should at least help to find where problems are occurring so that a more detailed

investigation can be done using more fine grain tools.

With the “Production History” tool we can get an overview of which productions are competing

and which one, if any, is selected. As described in the unit 3 text, to use the tool it should be

opened before running the model and then after the model is run we must press the “Get history”

button to display the results. When working with longer runs it can also help to have the tool

hide the empty columns. That can be done globally by setting the :draw-blank-columns

parameter in the model to nil, or for a particular display by checking the “Hide empty columns”

box at the bottom of the window. We will add that setting to the model and also turn off the

trace by adding those parameters to the current sgp call:

(sgp :esc t :ul t :egs .5 :ult t :draw-blank-columns nil :v nil)

We will save that change and then reload the model. Then we need to open a “Production

History” window from the Control Panel and run the model. We will run it for 40 trials by

calling run for 7*40 seconds:

> (run (* 7 40))

and then press the “Get history” button. That should result in a display which looks something

like this:

Each column is a conflict-resolution event. The green and orange productions indicate which

ones matched the current state and the green one is the one that was selected. Above we can see

the first three trials where the model chose A the first two times and then B on the third one. We

could scroll the view horizontally to see all the trials, but looking at the whole sequence at once

can often be more informative. To do that, we need to zoom out the display by pressing the “-”

button at the bottom of the window. After pressing that a few times we can have the entire 40

trial sequence visible at once and that will look like this:

You may not always want to zoom out that far, but for purposes of this example we will look at

the entire run. One thing that can help when zooming out with this tool is to turn off the display

of the black likes separating the columns. To do that you can press the “Grid” button at the

bottom and then the display will look like this which may be a little easier to look at:

Looking at that display we can see that choose-a gets selected a lot more often than choose-b

which is what we expected from the model. If we are interested in the utility values at particular

times we can also see those by placing the mouse cursor over the green or orange bars in the

display. Here is what it shows for the first green bar in the choose-a row:

It shows the noisy utility value which was used during that conflict-resolution action and the true

U(n) value for the production at that time. In this case the U(n) is 0 since that is before any

rewards have been applied. If we look at the first choose-b occurrence (the orange box) we see

that it also has a U(n) of 0 and its utility was less than the utility of choose-a which is why

choose-a was chosen at that time:

Using this tool we could look at the utility change for each trial to see how things are changing

from trial to trial and you should feel free to investigate that. However, we will not be walking

though that in this text. Instead, we will look at an alternative way to view that information

using the “Production Graph” tool.

The “Production Graph” tool can display the sequence of production firings broken into

segments based on when the model received rewards and in that view it will also show the utility

changes which occurred. Like the “Production History” tool, the “Production Graph” tool

should be opened before running the model. However, both displays rely on the same data being

recorded so having either one open before the run will allow both of them to be used to display

the data. Since we have been using the history tool we can just open the graph tool now and

view the data without having to run the model again.

After opening a “Production Graph” display, to get the information we are interested in now we

need to press the “Utilities” button. That will result in a display which looks like this:

The display is similar to the production graph display shown previously: it displays the sequence

of productions which fired as a directed graph starting at the production highlighted in green and

ending with a production highlighted in red. The “Utilities” display however differs in a couple

of ways from those seen previously. The first is that now the run is broken up into separate

graphs based on when the model receives rewards. The red highlighted productions will be the

last production to fire before a reward is received (except for the last display where it might be

just the final production which the model has fired whether or not it is followed by a reward).

Since we have a reward provided on each trial in this task there will be one graph for each trial of

this run, but the display shows that there are 41 total graphs to view. That is because the model

has already selected a production at the start of the 41
st
 trail which results in another graph to be

displayed. The other difference from the previous production graph displays is that now in each

production’s box we see two blue lines. The one at the top represents the true utility of the

production before the reward was provided and the one below represents the true utility after the

reward has been propagated. The bars start at the left of the box and increase in length with the

utility value. All of the productions are displayed in boxes of the same width and the utilities are

scaled across all of the productions and graphs. A blue bar of length zero represents the

minimum utility value that any production has across the entire run and a bar the width of the

production box will be the maximum utility that occurs for any production over the entire run.

While this display does not show the actual values of the utilities, the relative changes that it

does show should be sufficient to verify that things are working as desired and should be easier

to go through than reading all the utility trace information. We will only show a couple of the

graphs here for reference, but you may want to step through all of them on your own to make

sure you understand how the model operates.

Looking at the display above we see that the model chose A on the first trail and that the

response-matches production fires indicating a correct choice. When that happens we see that

both the choose-a and response-matches productions had their utilities increased while the others

stayed the same (which we also saw earlier in the utility trace). By using the graphic display it

should be easier to look at the changes that occur on each trial than it would be to read through

all of the utility traces. We will only show a couple more examples from this run below, but you

may want to look at the whole sequence to verify for yourself that it works as expected.

Here is the second trial where choose-a is fired and then no feedback is provided:

On that trail we see that none of the utilities have changed. Then on the third trial we see

choose-b as the first production fired followed by response-doesnt-match:

The utility of choose-b clearly decreases, but response-doesnt-match appears to stay the same.

The reason for that is because the starting utility of the productions is 0 and the reward provided

by response-doesnt-match is also 0. However, it is important to note that there is still a change in

the utility of response-doesnt-match as is shown in the utility traces displayed earlier:

...

 19.050 UTILITY PROPAGATE-REWARD 0

 Utility updates with Reward = 0.0 alpha = 0.2

 Updating utility of production CHOOSE-B

 U(n-1) = 0.0 R(n) = -5.05 [0.0 - 5.05 seconds since selection]

 U(n) = -1.0100001

 Updating utility of production RESPONSE-DOESNT-MATCH

 U(n-1) = 0.0 R(n) = -0.05 [0.0 - 0.05 seconds since selection]

 U(n) = -0.010000001

 19.050 PROCEDURAL CLEAR-BUFFER GOAL

At this time it has decreased from a utility of 0 to a utility of -0.01. That is because the effective

reward for a production is the reward provided, in this case 0, minus the time since the

production’s selection. Since the reward is provided when that production fires, 50ms have

passed since its selection and thus the effective reward it receives is -0.05. That change in utility

from 0 to -0.01 is not visible in the graphic display for this task, but might be in other tasks since

the changes shown are relative to the minimum and maximum utility values in the collected data.

After that trial there are several which show choose-a being selected followed by response-

matches and the utilities increasing. On the eighth trial we again find choose-a being selected,

but this time it is followed by response-doesnt-match:

There we see the utility of choose-a being decreased because of the incorrect guess and again, no

noticeable change in response-doesnt-match.

That is the last of the utilities graphs we will describe in the text, and ends our analysis of this

test model. Before going on however you may want to look at some more of the trials in the

Utilities graph and perhaps experiment with the two production tools described to get a feel for

how they may be useful.

Production Compilation

Models which use production compilation will almost always be using utility learning so that the

newly learned productions are introduced gradually, and they will also usually involve

declarative retrievals because compiling away the retrieval is one of the major benefits in

compiled productions. Because of that, one will have to be sensitive to all the issues related to

those mechanisms as described above and in the unit 5 text. A recommended practice when

working with production compilation is to first make sure the model works as expected without

turning on production compilation. That is because it will be easier to fix the basic operation of

the model as well as any procedural and declarative learning issues without having to deal with

newly learned productions as well. Once the model is working well at that level, then turn on

production compilation and address any new issues which arise. Those new issues may still

involve general utility or activation processes in addition to issues related to the learning of new

productions, but having tested the model without production compilation should make it easier to

locate and address the new issues. In this text we will focus specifically on preparation, testing,

and debugging issues related to the production compilation aspects of an example model, but for

other modeling tasks there may be other issues which will also have to be addressed.

The Task

The task the model will perform is similar to the choice and one hit blackjack tasks from

previous units. Two numbers will be presented on the screen, each from 0-3, and then one of

three choices must be made using the keys s, d, and f. After a key is hit, the result of that choice

for the given pair of numbers will indicate whether the result was a win, loss, or draw. The

spacebar must then be pressed to advance to the next trial. No information about the choices is

provided in advance and the objective is to maximize the score (wins minus losses) based on the

feedback provided while responding as quickly as possible. We do not have any data for the task

to fit the model to, but we do expect the model to improve both its score and response time as it

plays more games. We will look at the performance of the model over the course of 200 trials,

averaged into blocks of 10.

To run the model through multiple 200 trial sessions and report the average results call the

choice-game-experiment function. It requires one parameter which is the number of games to

run and average together. It also takes an optional parameter which if specified as t will print out

the results of each of the individual sessions as it runs.

The model can also be run through fewer trials using the choice-game-trials function. It takes

three keyword parameters: :n specifies how many trials to run with the default being 200, :reset

should be t or nil to indicate whether the model should be reset prior to the first trial (the default

is t), and :output should be t or nil to indicate whether or not the scores and response times

should be displayed for every 10 trials (also defaulting to t).

The Starting Model

Before discussing anything related to production compilation, we will first describe a model

which has been written to perform the task without production compilation. That model is found

in the "production-compilation-issues.lisp" file. After that we will investigate what changes are

necessary to effectively use that model with production compilation.

To model this task we have created a model which uses partial matching to retrieve a chunk

stored in declarative memory from a previous trial that is similar to the current trial. This model

is very similar to how the one hit blackjack model operated, and that is because this is a typical

approach to use when a model must learn from experiences. For each trial of the task the model

will create a chunk which includes the pair of numbers, the choice it made, and the result for that

choice. Then when presented with a pair of numbers on another trial it will attempt to retrieve a

chunk which indicates the winning move for the current pair and use the retrieved chunk to

determine a response for this trial. The model has partial matching enabled so that it may be able

to retrieve a chunk of a past trial even if this is the first time it experiences a given pair or if it

has not yet found the winning move. The model also has base-level learning enabled so that the

chunks which represent the trails will have their activations increased as it encounters and uses

them more often which should result in a decrease in the response times over the experiment.

Here is a high-level flow chart representation of the steps which the model will be performing.

Many of those steps require multiple productions to perform, and you should be able to read

through the productions in the model and follow how it works. We will not describe the

productions here, but we will provide some details on how the model represents the information

it uses to perform the task.

Here are the chunk-types which the model uses:

 (chunk-type task state)

 (chunk-type number visual-rep)

 (chunk-type response key)

 (chunk-type trial num1 num2 result response)

The task chunk-type is used for the goal buffer to keep an explicit state marker for sequencing

through the task. As has been stated in other units, doing that is not always necessary, but has

been done here to make the model easier to read and follow.

The number chunk-type is needed to encode the numbers which the model will be using in its

representation of the trials. That is necessary so that they can have similarities set between them.

The number chunks include a slot for the visual representation so that the model can retrieve a

number chunk based on the value which it gets when it attends to it on the screen. Here are the

initial number chunks which the model starts with in its declarative memory:

 (add-dm (zero isa number visual-rep "0")

 (one isa number visual-rep "1")

 (two isa number visual-rep "2")

 (three isa number visual-rep "3"))

The base-level of those chunks is set to a high value so that they should always be retrieved

quickly. There are also similarity values set between those items using a simple linear function

based on their differences.

The response chunk-type is used to represent the possible choices which the model can make in

the task. It has one slot which holds the representation of the key needed to make the manual

response. Here are the chunks which the model starts with in its declarative memory:

 (add-dm (response-1 isa response key "s")

 (response-2 isa response key "d")

 (response-3 isa response key "f"))

Like the number chunks, those chunks are given a high base-level activation as an assumption

that the model knows the instructions before starting the task.

The trial chunk-type is used to create the representation of a trial as the model performs the task.

The num1 and num2 slots will contain number chunks for the trial presented. The result slot will

contain one of the chunks: win, lose, or draw, and the response slot will contain the response

chunk used on that trial. Here is an example of what such a chunk might look like:

TRIAL0-0

 ISA TRIAL

 NUM1 ONE

 NUM2 THREE

 RESULT DRAW

 RESPONSE RESPONSE-2

Like the numbers, the result is encoded as a chunk so that similarities can be set between the

choices. That way when the model attempts to retrieve a win, it may still be able to retrieve a

draw or lose result for the trial. Since the model will not need to retrieve those result values, to

keep the model simpler, they are encoded explicitly by productions instead of providing chunks

in declarative memory and requiring a retrieval for encoding.

If you look at the similarity settings in the model between the result chunks you may find it

curious that win is set to be more similar to lose than it is to draw. The reason for that is because

if the model cannot retrieve a winning move, then retrieving a losing move is strategically better

than retrieving a move which resulted in a draw for improving the score. Thus, the similarities

are being used in this case to represent the usefulness of the information as an abstraction for a

more deliberate strategy process in the model. That simplification is reasonable for this

demonstration task since we are only concerned about showing learning through practice, but a

more thorough model of a real task like this may require the model to account for that strategy

processing.

Here are the parameter settings from the model:

 (sgp :esc t :lf .5 :bll .5 :mp 18 :rt -3 :ans .25)

Since we do not have data to fit, the parameters for the model were either set to recommended

values (:bll and :ans) or simply adjusted to values which resulted in showing improvements

which seemed reasonable for the demonstration.

Here are the results for the model on the task averaged over 50 runs:

Average Score of 50 trials

2.06 5.22 6.12 7.56 7.86 8.00 8.22 8.36 8.44 7.94 8.86 8.86 8.52 8.62 8.74 9.24 8.82 8.70 9.10 9.00

Average Response times

7.97 4.68 3.21 2.36 1.94 1.68 1.56 1.47 1.39 1.38 1.31 1.27 1.26 1.25 1.20 1.19 1.21 1.18 1.16 1.15

You may want to step through the model and perhaps explore its operation with the history and

graphing tools before continuing so that you have a good understanding of how it operates.

Considerations for Production Compilation

When using production compilation, there are some things that should be considered with respect

to the model for production compilation to work well. If the model was written with those

considerations in mind, then the next step would be to turn production compilation on and start

testing. However, if the model was not written for use with production compilation, which is the

case for the starting model we described above, then just turning it on “to see what happens” is

usually not going to work very well. For example, here is what happens if we run the starting

model with production compilation enabled and no other changes:

Average Score of 5 trials

4.40 3.40 4.80 4.40 4.20 5.60 6.40 5.80 7.00 5.80 6.00 4.40 5.40 5.20 4.20 4.80 4.80 5.60 4.40 4.60

Average Response times

6.95 5.72 4.57 3.72 4.64 3.72 2.38 2.12 2.03 3.37 1.76 2.55 1.89 1.99 2.75 2.84 2.47 2.22 2.40 1.86

Neither the scores nor the response times look very good relative to how it ran previously. That

might suggest that one should then start tracing, testing, and debugging the model, but the

recommendation would be to first consider the following issues before attempting to run it with

production compilation.

What is the task and how is the model run

Production compilation requires repetition to be effective because it will only show a change if

the model has the opportunity to use the newly learned productions. Thus, the task must be one

in which the model will be running repeatedly without being reset. Models which are already

using base-level learning or utility learning will likely have that characteristic already. Other

tasks however may not, for example the fan effect model and the subitizing models from the

tutorial do not. Those models are being reset for each trial, and thus production compilation

would not show any change in the results which they produce. If one wanted to use models like

that with production compilation they would have to be changed so that they run continuously

over the trials instead. The other thing to consider is whether there is enough repetition in the

task to be effective. If one is looking for proceduraliztion of declarative knowledge there will

typically need to be multiple usages of those chunks so that the productions can be strengthened

to the point of competing with the originals. For example, even if the fan experiment model

were to be changed to present the trials continuously, since each test sentence is only presented

once to that model, there would probably not be any use of the productions which proceduralize

the declarative information. If the task is not continuous and/or does not provide any repetition

then there is little reason to enable production compilation since it will not affect the operation of

the model.

Utility learning

One of the most important issues with respect to production compilation is utility learning. It is

the learning of utilities for the new productions which leads to their gradual introduction and

whether they will end up being used in place of the original productions. Without utility learning

the new productions will only ever have their initial utility value. If the model has not set the

initial utilities for the existing productions or changed the :nu and :iu parameters then a newly

learned production will have the same utility, 0, as all other productions and immediately

compete with them, regardless of whether that production is actually useful or not. For example,

in this task, that might mean that a production which always makes a losing move may be

competing equally with the productions which attempt to remember a past move.

If the starting model was already using utility learning then one will want to make sure that the

newly learned productions will start out with lower utilities than the original ones. If the original

productions have greater than zero utilities (either because they are explicitly set or because the

:iu parameter was set to greater than zero) then no immediate change would be needed. If the

original productions do start with zero or negative utilities then the :nu parameter, which controls

where the newly learned productions’ utilities start, should be set to a negative value so that they

are lower than the original productions’ utilities. In either case those initial utility values may

need to be adjusted as one starts to test the model, but it helps to have a reasonable starting point.

If the original model did not use utility learning, which is true for the starting model we have

here, then one will first have to add that to it. That means that in addition to enabling the

mechanism one will have to add some rewards to the model so that it has opportunities for

learning. The utility values for the initial productions and starting values for the newly learned

productions will also have to be set so that the new productions start below the originals (as

described above).

When enabling utility learning for a model which will be using production compilation one will

also want to make sure that there is some utility noise in the system so that the newly learned

productions will have a chance to be selected. If there is no noise then the new productions will

never exceed the utility of their parents (assuming a recommended utility learning rate of less

than 1.0) and thus will never be selected. The amount of utility noise will affect the rate at which

the new productions get used (how many times they will need to be recreated before they have

utilities with a reasonable probability of being selected) since the noise affects the probability of

selecting the productions as shown in the equation from unit 6. Assuming that one wants the

productions to be introduced gradually, a low value for the noise is recommended, but what

exactly constitutes a “low” value will depend on the relative utilities and the learning rate in the

model.

Expected Changes

Another thing to consider for a model is what production compilation may change about the way

that it operates. There are two very general things that production compilation can do: reduce

sequences of production firings into fewer productions and transition knowledge from a

declarative representation into a procedural one. Those can combine to produce interesting

results, like the over generalization that occurs in the past-tense model, but particular effects like

that usually require careful planning in the design of the model. As a first step, particularly for a

model which may not have been specifically designed for production compilation, just

considering the potential changes production compilation may have can be helpful before trying

to use it.

If the model is being designed from the start to utilize production compilation, then knowing

what effects are desired will help to shape the initial creation of the model. When looking to get

a decrease in the time the model takes because of a reduction of long production sequences one

will likely want to start the model with productions which perform small steps so that there are

opportunities for productions to be compiled together. One will also want to be careful about

separating perceptual and motor tasks which will block the compilation of productions from

those which are expected to be compiled together. If the proceduralization of declarative

knowledge is desired, obviously one will first have to have a model which makes requests for

declarative information. Then one will have to carefully consider the productions which request

and harvest the retrieval buffer chunks. Those productions will need to be safe for compilation,

and thus will need to avoid other actions like requesting and harvesting perceptual information or

performing multiple motor actions since those cannot be combined through production

compilation. In addition to that, one may want to consider the details of what information is

used to make the requests and what is tested in the harvesting productions. Those details will

shape how the compiled production works and are important when looking for particular results,

like generalization.

If the model was not initially designed for production compilation, then one should look over the

model with respect to the same issues noted above to determine if compilation is going to be

effective at performing the desired results. If a speed up from creating shorter production

sequences is desired, then one will want to look at the productions and see if they seem amenable

to compilation. Things to look for are whether the productions are already performing multiple

actions which might prevent them being combined any further and whether or not the perceptual

and motor actions are isolated or pervasive throughout the productions. If it does not look like

there will be many opportunities for compilation to combine productions further then one may

want to consider making some changes to provide those opportunities. That might involve

breaking up existing productions to make the model slower initially so that production

compilation can provide the speed up. It may also require creating productions specifically for

the perceptual and motor actions so that they are separated from productions which can be

compiled together. If the transition from declarative to procedural knowledge is desired then,

like above, one will want to look at the productions which request and harvest the declarative

chunks to make sure that they can be compiled together.

Considering the starting model

With those concepts in mind, we will look at the task and starting model before enabling

production compilation and running it. Because the original task involved base-level learning

the model already ran continuously over the trials. Also, the 200 trials provided enough

repetition to show learning for the declarative information. So the task and model seem like they

are functionally capable of working with production compilation.

Let us next consider what we expect production compilation to do for this model. Looking over

the productions, this starting model has been written with productions which already combine

multiple actions. In addition, there are only 10 productions fired to perform a trial of the task as

it stands, and since many of those productions are involved with perceptual processes that will

always be required there appears to be little opportunity for this model to improve performance

from reducing long production sequences. If we were interested in fitting a particular gradual

performance increase, then we may want to reconsider this as a starting model and perhaps

simplify those productions or move to a model which uses a more general instruction following

process to do the task, like the paired associate task from unit 7. For this example we will not

make any changes to try to change that and just see if there are any gains in that respect as is.

Transitioning the knowledge from declarative to procedural however does seem like something

which would be desirable in this task. Instead of always having to retrieve a move from

declarative memory we would like to see this model develop productions which are able to make

a move directly. The productions which the model has for performing the critical retrievals are

free of perceptual and motor actions (other than a final response). Therefore, it seems like it

should be possible for this model to do that. We could look more closely at those productions

now to make sure that they can safely be compiled together, but instead we will wait and let the

production compilation mechanism itself indicate any problems it finds when we run it later.

The last thing to consider is utility learning, and this starting model does not currently use it.

Therefore we will need to add that to it before production compilation will be able to affect the

operation of the model through a gradual introduction of newly learned productions. That will

involve setting some general parameters as well as providing rewards to the model. Because the

model’s results did not depend on utility learning we will have to start by just setting some

reasonable values, and then perhaps adjust them later once we enable production compilation and

see how it performs. We will take a little time to walk through exactly how we will chose those

initial values in the next few paragraphs.

Since the model already has three productions for processing the feedback, that seems like a

good place to add rewards. To determine how much reward to provide, we will make some

simple assumptions and go from there. If we assume that new productions will start at a utility

of 0 (the default), we will want the initial production to start somewhere above that. Another

assumption that is usually a good one to make is that we do not want the initial productions to

drop to a utility below where a newly created production starts since we do not want the newly

learned productions to immediately be preferred. Since we are assuming that new productions

start with a utility of 0, that means that the initial productions should always have positive

utilities. To ensure that, we do not want productions to get negative effective rewards (the

reward minus the time between the production selection and the reward being provided). Thus,

the minimum reward we want to provide to the model will depend on the longest time we expect

the model to take before getting a reward. That should happen on the first trial it does because

that will result in a retrieval failure for a past game, which represents the maximum time a

retrieval can take. To find that we will turn on the trace to see when the feedback production

fires and run one trail (since the :seed parameter is not set in the model, if you run it your trace

will differ slightly from the one shown here):

> (CHOICE-GAME-TRIALS :N 1)

 0.000 GOAL SET-BUFFER-CHUNK GOAL TASK0 REQUESTED NIL

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.050 PROCEDURAL PRODUCTION-FIRED DETECT-TRIAL-START

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.185 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-1

 0.189 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL ONE

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TRIAL0

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-1

 0.300 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0

 0.350 PROCEDURAL PRODUCTION-FIRED FIND-NUM-2

 0.435 VISION SET-BUFFER-CHUNK VISUAL TEXT1

 0.485 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-2

 0.489 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL ZERO

 0.539 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-2

 0.589 PROCEDURAL PRODUCTION-FIRED RETRIEVE-PAST-TRIAL

 10.632 DECLARATIVE RETRIEVAL-FAILURE

 10.682 PROCEDURAL PRODUCTION-FIRED NO-PAST-TRIAL

 10.684 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL RESPONSE-3

 10.734 PROCEDURAL PRODUCTION-FIRED RESPOND

 10.734 MOTOR PRESS-KEY f

 10.944 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 11.079 PROCEDURAL PRODUCTION-FIRED DETECT-FEEDBACK

 11.164 VISION SET-BUFFER-CHUNK VISUAL TEXT2

 11.214 PROCEDURAL PRODUCTION-FIRED ENCODE-FEEDBACK-DRAW

 11.214 MOTOR PRESS-KEY SPACE

 11.214 GOAL SET-BUFFER-CHUNK GOAL TASK1

 11.324 ------ Stopped because condition is true

Score

 0(1)

Average response times

 10.944

((0) (10944))

It takes the model a little under 11 seconds to respond, and the feedback production fires at time

11.214 seconds. Therefore if we want all of the productions to receive positive rewards on all of

the trials we will need to provide a reward greater than 11.214 in each case. Then, as long as the

model responds, all of the productions will receive a positive reward and should not drop to a

utility below 0.

We now need to decide exactly how much reward to provide for each result, and we will also

need to consider the starting utility of the initial productions. What values to use can depend on

many factors in a complex model, but in this case we will use the minimum reward value for a

positive reward found above to provide some guidance. Thinking about the expected result,

learning productions which respond without retrieving a past game, presumably we only really

want to learn such productions for the responses which lead to wins, and not losses or draws. To

achieve that we will want to have multiple reward values so that wins are favored over the

others. Whether or not to favor a draw over a loss might matter for fitting real performance, but

for this task we will assume that a draw is better than a loss. Thus, we will have three reward

values provided to the model. Since we want all of the productions to receive positive rewards

for completing the task, we will start by giving a loss a reward of 12. From there we will choose

some larger values for a draw and a win. One could perform some analysis to determine values

based on probability of being selected as a function of rewards, but since we do not exactly know

how production compilation will affect this specific model we will just choose values of 15 and

18 for a draw and win respectively so that there is some distance between them and see how that

works. Thus, here are the settings which we will add to the model:

 (spp encode-feedback-win :reward 18)

 (spp encode-feedback-lose :reward 12)

 (spp encode-feedback-draw :reward 15)

Now we need to choose the starting utility for the initial productions. Given the nature of the

task and the rewards chosen already, starting with the initial productions having a utility equal to

the reward given for a draw seems like a good place to start them. Then a win should result in

increasing utilities while a loss will cause them to decrease.

The last thing we need to add is the noise. As with the rewards, we could try to determine a

value analytically, but instead we will just pick a starting noise value of 1.0 and adjust it later if

we notice any issues. We will leave the learning rate, alpha, at its default of .2. So, here are the

settings which we need to add to the model now to enable utility learning and set those

parameters:

(sgp :ul t :egs 1.0 :iu 15)

Those changes should not affect the operation of the current model since it does not have any

productions which are currently competing for selection based on utility. If we run a few trials to

check it still seems to be performing as before:

Average Score of 10 trials

3.80 5.90 6.80 7.80 8.90 8.00 8.80 8.00 8.90 7.30 9.20 8.60 8.70 8.60 8.40 9.10 9.20 9.10 8.90 9.00

Average Response times

7.64 4.12 2.89 1.98 1.70 1.64 1.48 1.44 1.38 1.41 1.32 1.29 1.26 1.24 1.23 1.17 1.16 1.17 1.16 1.18

You may want to inspect that in more detail using the Environment tools as described for the

first model above to verify that it is always receiving a reward and to see how the utilities are

changing, even though they are not affecting the operation of this model.

Now that we have inspected the model and made the changes that were necessary for production

compilation to work well it is time to enable production compilation and start testing. To enable

production compilation all we need to do is set the parameter :epl to t, but we are also going to

turn on the additional trace output it provides so that we can see what it does as the model runs.

So we will add this additional setting to the model:

(sgp :epl t :pct t)

Testing the Model

Testing a model which uses production compilation typically involves four phases. The first is

making sure the model performs as expected without production compilation being turned on.

After that, production compilation is turned on and one runs the model watching the productions

which are generated by production compilation. The objective here is to verify that things are

working well at the symbolic level. You want to make sure that production compilation is able

to compose the starting productions into new productions, and that those new productions appear

to be doing the things you expect. Once it looks like production compilation is producing

reasonable new productions you want to make sure that those new productions are not going to

cause problems for the model’s operation. If the model is small and does not require a long time

to run, then it may be sufficient to just run it for multiple trials and monitor its operation, but for

a large or very long running model it may be easier to temporarily adjust some of the model

parameters so that the new productions are used right away so that their effects are easier to see.

Finally, once you are comfortable with the productions generated through compilation and how

they affect the model’s basic operation you can then start to run the model for comparison to data

and determining whether or not you get the overall results you were looking for and attempt to

adjust the parameters as needed to fit your data. As with all testing and debugging, that is not

always going to be a simple sequential process since one may have to go back and perform

earlier tests again because of changes or problems which are encountered in a later step.

Since we have already tested the model without production compilation we will now turn on

compilation and look at the productions it generates and the places where it cannot generate

productions. To see that we will need to turn the model trace on, the :v parameter, in addition to

the production compilation trace value we just added. Since we may also want to be able to

repeat the same trials again it is a good idea to have the model print out the current seed when it

gets reset so we can set that value again later if we want to run a trial again to analyze. To do

that one would add this setting to the top of the model definition:

(sgp :seed)

However, so that your model runs correspond to those shown in the text we will be setting

explicit seed values in the model for testing purposes. The first seed we will use is this one:

(sgp :seed (1 1))

Now we will run the model one trial at a time to look at the results of production compilation. It

will require multiple trials before we are going to see the primary result we are expecting

because the model will have to first learn a chunk which represents a trial and then be able to

successfully retrieve it. We could adjust the parameters and add additional chunks to the model

to artificially create the situations we are interested in seeing production compilation applied to,

but since this is a fairly simple model that is not really necessary because we can easily

investigate that situation occurring under the model’s normal operation.

Here is what we get with the production compilation trace enabled for the first trial:

> (choice-game-trials :n 1 :reset t)

 0.000 GOAL SET-BUFFER-CHUNK GOAL TASK0 REQUESTED NIL

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.050 PROCEDURAL PRODUCTION-FIRED DETECT-TRIAL-START

Production Compilation process started for DETECT-TRIAL-START

 No previous production to compose with.

 Setting previous production to DETECT-TRIAL-START.

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.185 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-1

Production Compilation process started for ATTEND-NUM-1

 Buffer VISUAL prevents composition of these productions

 because the first production makes a request and the second production harvests the

chunk.

 Production DETECT-TRIAL-START and ATTEND-NUM-1 cannot be composed.

 Setting previous production to ATTEND-NUM-1.

 0.187 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL THREE

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TRIAL0

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-1

Production Compilation process started for ENCODE-NUM-1

 Production ATTEND-NUM-1 and ENCODE-NUM-1 are being composed.

 New production:

(P PRODUCTION0

 "ATTEND-NUM-1 & ENCODE-NUM-1 - THREE"

 =GOAL>

 ISA TASK

 STATE ATTEND-NUM-1

 =IMAGINAL>

 ISA TRIAL

 =VISUAL>

 ISA VISUAL-OBJECT

 VALUE "3"

 ==>

 =IMAGINAL>

 NUM1 THREE-0

 =GOAL>

 STATE FIND-NUM-2

 +VISUAL-LOCATION>

 ISA VISUAL-LOCATION

 :ATTENDED NIL

 > SCREEN-X CURRENT

)

Parameters for production PRODUCTION0:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to ENCODE-NUM-1.

 0.300 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0

 0.350 PROCEDURAL PRODUCTION-FIRED FIND-NUM-2

Production Compilation process started for FIND-NUM-2

 Buffer VISUAL-LOCATION prevents composition of these productions

 because the first production makes a request and the second production harvests the

chunk.

 Production ENCODE-NUM-1 and FIND-NUM-2 cannot be composed.

 Setting previous production to FIND-NUM-2.

 0.435 VISION SET-BUFFER-CHUNK VISUAL TEXT1

 0.485 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-2

Production Compilation process started for ATTEND-NUM-2

 Buffer VISUAL prevents composition of these productions

 because the first production makes a request and the second production harvests the

chunk.

 Production FIND-NUM-2 and ATTEND-NUM-2 cannot be composed.

 Setting previous production to ATTEND-NUM-2.

 0.487 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TWO

 0.537 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-2

Production Compilation process started for ENCODE-NUM-2

 Production ATTEND-NUM-2 and ENCODE-NUM-2 are being composed.

 New production:

(P PRODUCTION1

 "ATTEND-NUM-2 & ENCODE-NUM-2 - TWO"

 =GOAL>

 ISA TASK

 STATE ATTEND-NUM-2

 =IMAGINAL>

 ISA TRIAL

 =VISUAL>

 ISA VISUAL-OBJECT

 VALUE "2"

 ==>

 =IMAGINAL>

 NUM2 TWO-0

 =GOAL>

 STATE RETRIEVE-PAST-TRIAL

)

Parameters for production PRODUCTION1:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to ENCODE-NUM-2.

 0.587 PROCEDURAL PRODUCTION-FIRED RETRIEVE-PAST-TRIAL

Production Compilation process started for RETRIEVE-PAST-TRIAL

 Production ENCODE-NUM-2 and RETRIEVE-PAST-TRIAL are being composed.

 New production:

(P PRODUCTION2

 "ENCODE-NUM-2 & RETRIEVE-PAST-TRIAL"

 =GOAL>

 ISA TASK

 STATE ENCODE-NUM-2

 =IMAGINAL>

 ISA TRIAL

 NUM1 =N1

 =RETRIEVAL>

 ISA NUMBER

 ==>

 =IMAGINAL>

 NUM2 =RETRIEVAL

 =GOAL>

 STATE PROCESS-PAST-TRIAL

 +RETRIEVAL>

 ISA TRIAL

 NUM1 =N1

 NUM2 =RETRIEVAL

 RESULT WIN

)

Parameters for production PRODUCTION2:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to RETRIEVE-PAST-TRIAL.

 10.630 DECLARATIVE RETRIEVAL-FAILURE

 10.680 PROCEDURAL PRODUCTION-FIRED NO-PAST-TRIAL

Production Compilation process started for NO-PAST-TRIAL

 Cannot compile RETRIEVE-PAST-TRIAL and NO-PAST-TRIAL because the time between them

exceeds the threshold time.

 Setting previous production to NO-PAST-TRIAL.

 10.682 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL RESPONSE-1

 10.732 PROCEDURAL PRODUCTION-FIRED RESPOND

Production Compilation process started for RESPOND

 Production NO-PAST-TRIAL and RESPOND are being composed.

 New production:

(P PRODUCTION3

 "NO-PAST-TRIAL & RESPOND - RESPONSE-1"

 =GOAL>

 ISA TASK

 STATE PROCESS-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 ?MANUAL>

 STATE FREE

 ?RETRIEVAL>

 STATE ERROR

 ==>

 =IMAGINAL>

 RESPONSE RESPONSE-1-0

 =GOAL>

 STATE DETECT-FEEDBACK

 +MANUAL>

 ISA PRESS-KEY

 KEY "s"

)

Parameters for production PRODUCTION3:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to RESPOND.

 10.732 MOTOR PRESS-KEY s

 10.942 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED

NIL

 11.077 PROCEDURAL PRODUCTION-FIRED DETECT-FEEDBACK

Production Compilation process started for DETECT-FEEDBACK

 Production RESPOND and DETECT-FEEDBACK are being composed.

 New production:

(P PRODUCTION4

 "RESPOND & DETECT-FEEDBACK"

 =GOAL>

 ISA TASK

 STATE RESPOND

 =IMAGINAL>

 ISA TRIAL

 =RETRIEVAL>

 ISA RESPONSE

 KEY =KEY

 =VISUAL-LOCATION>

 ISA VISUAL-LOCATION

 ?MANUAL>

 STATE FREE

 ?VISUAL>

 STATE FREE

 ==>

 =IMAGINAL>

 RESPONSE =RETRIEVAL

 =GOAL>

 STATE ENCODE-FEEDBACK

 +VISUAL>

 ISA MOVE-ATTENTION

 SCREEN-POS =VISUAL-LOCATION

 +MANUAL>

 ISA PRESS-KEY

 KEY =KEY

)

Parameters for production PRODUCTION4:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to DETECT-FEEDBACK.

 11.162 VISION SET-BUFFER-CHUNK VISUAL TEXT2

 11.212 PROCEDURAL PRODUCTION-FIRED ENCODE-FEEDBACK-LOSE

Production Compilation process started for ENCODE-FEEDBACK-LOSE

 Buffer VISUAL prevents composition of these productions

 because the first production makes a request and the second production harvests the

chunk.

 Production DETECT-FEEDBACK and ENCODE-FEEDBACK-LOSE cannot be composed.

 Setting previous production to ENCODE-FEEDBACK-LOSE.

 11.212 MOTOR PRESS-KEY SPACE

 11.212 GOAL SET-BUFFER-CHUNK GOAL TASK1

 11.322 ------ Stopped because condition is true

Score

 -1(1)

Average response times

 10.942

((-1) (10942))

After every production fires production compilation attempts to create a new production, and for

each attempt the production compilation trace provides the details of what the resulting new

production looks like or a description of an issue which prevented it from compiling the

productions. We will look at each one that occurred in this trace to make sure things are working

as expected.

Here is the first production compilation trace message:

Production Compilation process started for DETECT-TRIAL-START

 No previous production to compose with.

 Setting previous production to DETECT-TRIAL-START.

Since that is the first production there is nothing to compose it with and thus all it can do is

record that that production is now the previous one for use when the next one fires. The next

result is this:

Production Compilation process started for ATTEND-NUM-1

 Buffer VISUAL prevents composition of these productions

 because the first production makes a request and the second production harvests the

chunk.

 Production DETECT-TRIAL-START and ATTEND-NUM-1 cannot be composed.

 Setting previous production to ATTEND-NUM-1.

It indicates that the productions cannot be composed because the visual buffer blocks it due to

the request and harvesting of a chunk. Since perceptual information cannot be compiled into

new productions that is what we would expect and there is not anything we need to do to try to

fix that.

The next result is somewhat unexpected:

Production Compilation process started for ENCODE-NUM-1

 Production ATTEND-NUM-1 and ENCODE-NUM-1 are being composed.

 New production:

(P PRODUCTION0

 "ATTEND-NUM-1 & ENCODE-NUM-1 - THREE"

 =GOAL>

 ISA TASK

 STATE ATTEND-NUM-1

 =IMAGINAL>

 ISA TRIAL

 =VISUAL>

 ISA VISUAL-OBJECT

 VALUE "3"

 ==>

 =IMAGINAL>

 NUM1 THREE-0

 =GOAL>

 STATE FIND-NUM-2

 +VISUAL-LOCATION>

 ISA VISUAL-LOCATION

 :ATTENDED NIL

 > SCREEN-X CURRENT

)

Parameters for production PRODUCTION0:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to ENCODE-NUM-1.

Since the encoding step which the model performs requires retrieving the number chunk from

declarative memory, production compilation is able to compose those two into a new production

which does not require the retrieval. We did not really consider that in what we expected from

the model, but it appears to be another opportunity for the model to get faster over time which is

in line with what we want so having such a production does not seem to be a problem.

The next two production compilation attempts are unsuccessful because the productions involved

are performing perceptual actions:

Production Compilation process started for FIND-NUM-2

 Buffer VISUAL-LOCATION prevents composition of these productions

 because the first production makes a request and the second production harvests the

chunk.

 Production ENCODE-NUM-1 and FIND-NUM-2 cannot be composed.

 Setting previous production to FIND-NUM-2.

Production Compilation process started for ATTEND-NUM-2

 Buffer VISUAL prevents composition of these productions

 because the first production makes a request and the second production harvests the

chunk.

 Production FIND-NUM-2 and ATTEND-NUM-2 cannot be composed.

 Setting previous production to ATTEND-NUM-2.

After that is a production very similar to production0 this time encoding the second number into

the imaginal chunk without having to perform the retrieval:

Production Compilation process started for ENCODE-NUM-2

 Production ATTEND-NUM-2 and ENCODE-NUM-2 are being composed.

 New production:

(P PRODUCTION1

 "ATTEND-NUM-2 & ENCODE-NUM-2 - TWO"

 =GOAL>

 ISA TASK

 STATE ATTEND-NUM-2

 =IMAGINAL>

 ISA TRIAL

 =VISUAL>

 ISA VISUAL-OBJECT

 VALUE "2"

 ==>

 =IMAGINAL>

 NUM2 TWO-0

 =GOAL>

 STATE RETRIEVE-PAST-TRIAL

)

Parameters for production PRODUCTION1:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to ENCODE-NUM-2.

Again, this was not expected, but seems to be in line with the general expectations.

The next composition results in a production which is just the composition of two productions

without removing an intervening retrieval:

Production Compilation process started for RETRIEVE-PAST-TRIAL

 Production ENCODE-NUM-2 and RETRIEVE-PAST-TRIAL are being composed.

 New production:

(P PRODUCTION2

 "ENCODE-NUM-2 & RETRIEVE-PAST-TRIAL"

 =GOAL>

 ISA TASK

 STATE ENCODE-NUM-2

 =IMAGINAL>

 ISA TRIAL

 NUM1 =N1

 =RETRIEVAL>

 ISA NUMBER

 ==>

 =IMAGINAL>

 NUM2 =RETRIEVAL

 =GOAL>

 STATE PROCESS-PAST-TRIAL

 +RETRIEVAL>

 ISA TRIAL

 NUM1 =N1

 NUM2 =RETRIEVAL

 RESULT WIN

)

Parameters for production PRODUCTION2:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to RETRIEVE-PAST-TRIAL.

This is another opportunity for the model to speed up over time, and also in line with the general

expectation for the model.

Next, we see a failure to compose productions because of the amount of time that passed:

Production Compilation process started for NO-PAST-TRIAL

 Cannot compile RETRIEVE-PAST-TRIAL and NO-PAST-TRIAL because the time between them

exceeds the threshold time.

 Setting previous production to NO-PAST-TRIAL.

The threshold time is a settable parameter in the model which we might what to consider

adjusting, but since there was also a failure to retrieve a chunk those productions would not have

been composable anyway. So, we will hold off on adjusting the parameter until we see whether

or not the successful retrievals are taking too long.

The next opportunity for composition results in a production which eliminates another retrieval:

Production Compilation process started for RESPOND

 Production NO-PAST-TRIAL and RESPOND are being composed.

 New production:

(P PRODUCTION3

 "NO-PAST-TRIAL & RESPOND - RESPONSE-1"

 =GOAL>

 ISA TASK

 STATE PROCESS-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 ?MANUAL>

 STATE FREE

 ?RETRIEVAL>

 STATE ERROR

 ==>

 =IMAGINAL>

 RESPONSE RESPONSE-1-0

 =GOAL>

 STATE DETECT-FEEDBACK

 +MANUAL>

 ISA PRESS-KEY

 KEY "s"

)

Parameters for production PRODUCTION3:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to RESPOND.

This production effectively results in guessing “s” when it cannot remember a past move. While

that does save time by eliminating a production and a retrieval, it probably will not be a very

useful production overall and we may never see it actually being used.

Despite the number of different conditions involved across various cognitive, perceptual, and

motor modules the respond and detect-feedback productions are able to be composed:

Production Compilation process started for DETECT-FEEDBACK

 Production RESPOND and DETECT-FEEDBACK are being composed.

 New production:

(P PRODUCTION4

 "RESPOND & DETECT-FEEDBACK"

 =GOAL>

 ISA TASK

 STATE RESPOND

 =IMAGINAL>

 ISA TRIAL

 =RETRIEVAL>

 ISA RESPONSE

 KEY =KEY

 =VISUAL-LOCATION>

 ISA VISUAL-LOCATION

 ?MANUAL>

 STATE FREE

 ?VISUAL>

 STATE FREE

 ==>

 =IMAGINAL>

 RESPONSE =RETRIEVAL

 =GOAL>

 STATE ENCODE-FEEDBACK

 +VISUAL>

 ISA MOVE-ATTENTION

 SCREEN-POS =VISUAL-LOCATION

 +MANUAL>

 ISA PRESS-KEY

 KEY =KEY

)

Parameters for production PRODUCTION4:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to DETECT-FEEDBACK.

This seems like it might be yet another helpful production to save time doing the task, but a

careful look at the conditions and actions with respect to what happens in the task will expose an

issue with this production. This production gets a visual-location buffer test from detect-

feedback and the manual action from respond. However, a chunk only enters the visual-location

buffer because of buffer stuffing after the model makes a response which causes the feedback to

appear. Thus, while there is nothing syntactically wrong with production4 it will never be able

to match during this task since it has conditions which only result from actions it performs. That

happens because production compilation has no way to detect dependencies which occur outside

of the productions, in this case that the screen changes as a result of the key press, and thus it can

create productions which will never be able to fire. Typically, that will not be problematic since

a production which does not match has no effect on the model’s performance, but in some rare

situations it may be necessary to explicitly indicate dependencies of that nature somehow in the

production conditions to avoid the composition of productions which violate implicit task

dependencies.

Here is the final opportunity for composition in this trial:

Production Compilation process started for ENCODE-FEEDBACK-LOSE

 Buffer VISUAL prevents composition of these productions

 because the first production makes a request and the second production harvests the

chunk.

 Production DETECT-FEEDBACK and ENCODE-FEEDBACK-LOSE cannot be composed.

 Setting previous production to ENCODE-FEEDBACK-LOSE.

which fails because of the perceptual action involved.

Looking at the first trial produced a couple of unexpected compositions, but nothing which

seems to violate what we want the model to do overall. Now we will run a couple of more trials

looking for compositions we have not seen yet, and in particular we want to see what happens

when there is a successful retrieval of a past trial. We need to make sure to run those additional

trials without resetting the model, thus we will need to specify the reset value as nil for choice-

game-trial:

(CHOICE-GAME-TRIALS :N 1 :RESET NIL)

The second trail still does not result in a successful retrieval, but there are a few new production

compilation attempts worth looking at. The first occurs immediately when the feedback

encoding production of the previous trial gets composed with the detect-trial-start production:

Production Compilation process started for DETECT-TRIAL-START

 Production ENCODE-FEEDBACK-LOSE and DETECT-TRIAL-START are being composed.

 New production:

(P PRODUCTION5

 "ENCODE-FEEDBACK-LOSE & DETECT-TRIAL-START"

 =GOAL>

 ISA TASK

 STATE ENCODE-FEEDBACK

 =IMAGINAL>

 ISA TRIAL

 =VISUAL-LOCATION>

 ISA VISUAL-LOCATION

 =VISUAL>

 ISA VISUAL-OBJECT

 VALUE "lose"

 ?MANUAL>

 STATE FREE

 ?VISUAL>

 STATE FREE

 ==>

 =IMAGINAL>

 RESULT LOSE

 +VISUAL>

 ISA MOVE-ATTENTION

 SCREEN-POS =VISUAL-LOCATION

 +MANUAL>

 ISA PRESS-KEY

 KEY SPACE

 +IMAGINAL>

 ISA TRIAL

 +GOAL>

 ISA TASK

 STATE ATTEND-NUM-1

)

Parameters for production PRODUCTION5:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward 12.000

 Setting previous production to DETECT-TRIAL-START.

Like production4 from the first trial this production has a visual-location condition which will

not be satisfied while doing this task because it comes about from the action which this

production would make. Thus, this is another production which will never match and fire.

Then, later in the run we see two occasions where production compilation recreates the same

productions which it did in the first trial:

Production Compilation process started for RETRIEVE-PAST-TRIAL

 Production ENCODE-NUM-2 and RETRIEVE-PAST-TRIAL are being composed.

 Recreating production PRODUCTION2

Parameters for production PRODUCTION2:

 :utility -0.073

 :u 2.451

 :at 0.050

 :reward NIL

 Setting previous production to RETRIEVE-PAST-TRIAL.

Production Compilation process started for DETECT-FEEDBACK

 Production RESPOND and DETECT-FEEDBACK are being composed.

 Recreating production PRODUCTION4

Parameters for production PRODUCTION4:

 :utility NIL

 :u 2.859

 :at 0.050

 :reward NIL

 Setting previous production to DETECT-FEEDBACK.

In both those cases we see that the utility of those productions has now increased from 0, their

initial value when first composed, since they get rewards based on the parent productions’

utilities with each recreation.

Running a third trial again results in a failure to retrieve a chunk. There is however one curious

composition given what we saw with the first trial:

Production Compilation process started for RESPOND

 Production NO-PAST-TRIAL and RESPOND are being composed.

 New production:

(P PRODUCTION15

 "NO-PAST-TRIAL & RESPOND - RESPONSE-1"

 =GOAL>

 ISA TASK

 STATE PROCESS-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 ?MANUAL>

 STATE FREE

 ?RETRIEVAL>

 STATE ERROR

 ==>

 =IMAGINAL>

 RESPONSE RESPONSE-1-1

 =GOAL>

 STATE DETECT-FEEDBACK

 +MANUAL>

 ISA PRESS-KEY

 KEY "s"

)

Parameters for production PRODUCTION15:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to RESPOND.

On the first trial we also saw the composition of a production which collapsed no-past-trial with

respond removing the retrieval of chunk response-1:

(P PRODUCTION3

 "NO-PAST-TRIAL & RESPOND - RESPONSE-1"

 =GOAL>

 ISA TASK

 STATE PROCESS-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 ?MANUAL>

 STATE FREE

 ?RETRIEVAL>

 STATE ERROR

 ==>

 =IMAGINAL>

 RESPONSE RESPONSE-1-0

 =GOAL>

 STATE DETECT-FEEDBACK

 +MANUAL>

 ISA PRESS-KEY

 KEY "s"

)

So the question is why on this trial is production15 created instead of just strengthening

production3? If we look closely at those productions we can see that they differ very slightly in

the modifications that they perform to the chunk in the imaginal buffer:

 =IMAGINAL>

 RESPONSE RESPONSE-1-1

and

 =IMAGINAL>

 RESPONSE RESPONSE-1-0

So, now the question is why do they differ like that? If we look at declarative memory we do not

find either of those chunks. That probably means that they have been merged with other chunks.

We can find that out using the pprint-chunks command to display them:

> (pprint-chunks response-1-0 response-1-1)

RESPONSE-1-0 (RESPONSE-1)

 ISA RESPONSE

 KEY "s"

RESPONSE-1-1 (RESPONSE-1)

 ISA RESPONSE

 KEY "s"

Both have been merged with the original chunk response-1, which does not seem to help explain

why those are different productions. To answer that, we will have to look at where that action

comes from in the original productions.

The modification to the imaginal chunk is an action from the respond production:

 (p respond

 =goal>

 isa task

 state respond

 =retrieval>

 isa response

 key =key

 ?manual>

 state free

 =imaginal>

 isa trial

 ==>

 =imaginal>

 response =retrieval

 +manual>

 isa press-key

 key =key

 =goal>

 state detect-feedback)

In that production the slot is set to the chunk which is currently in the retrieval buffer. Recall

that buffers hold copies of chunks. Thus when the respond production fires the chunk in the

retrieval buffer is not chunk response-1 and since the buffer has not yet been cleared (that

happens after respond fires) that chunk in the buffer has not yet been merged with response-1.

Production compilation does not know anything about what will happen to chunks in the future

when it uses them in composing a production. Therefore, every time production compilation

combines those two productions the chunk in the retrieval buffer will always be a new chunk and

since that chunk is used to set the response slot of the imaginal buffer it must create a new

production each time.

That may seem like a flaw with production compilation, but since it is not plausible for the

mechanism to know the future that is all it can do. Therefore the flaw is really in the model

design – specifically the representation of the knowledge it is using. It is the content of chunks

which should be meaningful to the model, not their particular identity. While it is often

convenient to refer to chunks by name like that in a model, there are situations where such

shortcuts are inappropriate and should be avoided. There are a lot of ways that this model could

be changed to not use the identity of the retrieved chunk directly, but since having those separate

productions from this composition should not affect what we expect from the model we are not

going to make any of those changes right now. However, if we encounter any other similar

issues we will reconsider changing the model.

Since we still have not seen a successful retrieval we will run the model for a few more trials

until we get one. The fourth trial does not show anything different, but on the fifth trial the

model successfully retrieves a past trial chunk:

 51.979 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TRIAL3-0

 52.029 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-WIN

Production Compilation process started for RETRIEVED-A-WIN

 Production RETRIEVED-A-WIN is not valid for compilation

 because it makes a direct request to the RETRIEVAL buffer

Unfortunately, production compilation tells us that the retrieved-a-win production is invalid for

compilation purposes because it makes a direct retrieval request. Here is that production:

(p retrieved-a-win

 =goal>

 isa task

 state process-past-trial

 =retrieval>

 isa trial

 result win

 response =response

 ==>

 +retrieval> =response

 =goal>

 state respond)

The value from the response slot of the trial chunk is being directly retrieved, which is done as a

consequence of a specific chunk reference being stored in that slot as was discussed for the

respond production above. Since composing retrieve-past-trial and retrieved-a-win is something

that we want the model to do we are going to have to change the representation stored in the

response slot of the trial chunks and the productions which use them.

There are many ways which we could change the model, but because the model has such a

simple representation for the response chunks (they only contain one slot) we will start by

making a small change and see how that affects things. The change that we will make is that

instead of storing a response chunk itself in the response slot of the trial chunk we will store the

value from the key slot of a response chunk in the response slot of the trial chunk. If the

response chunks had contained more slots, then this simple change may not have been possible

and a more thorough analysis of the model and its representations would have been required to

determine how to request and harvest the chunks needed so that they would be compatible with

production compilation.

Making that change requires changing three productions. The respond production needs to be

changed to save the key slot’s value instead of the response chunk itself:

 (p respond

 =goal>

 isa task

 state respond

 =retrieval>

 isa response

 key =key

 ?manual>

 state free

 =imaginal>

 isa trial

 ==>

 =imaginal>

 response =key

 +manual>

 isa press-key

 key =key

 =goal>

 state detect-feedback)

Then the retrieved-a-win and retrieved-a-non-win productions need to be changed so that they

retrieve a response chunk based on the key value instead of directly retrieving the chunk:

(p retrieved-a-win

 =goal>

 isa task

 state process-past-trial

 =retrieval>

 isa trial

 result win

 response =response

 ==>

 +retrieval>

 isa response

 key =response

 =goal>

 state respond)

 (p retrieved-a-non-win

 =goal>

 isa task

 state process-past-trial

 =retrieval>

 isa trial

 - result win

 response =response

 ==>

 +retrieval>

 isa response

 key =response

 =goal>

 state guess-other)

After making that change, we should look at the model to make sure that there are not any other

changes that should be made while we are adjusting it since we are going to have to retest it

without production compilation before continuing to make sure it still works and making other

changes now may save us from having to come back and test it without compilation yet again

later.

One thing to notice is that since we now have the key to press in the trial chunks the model does

not have to retrieve the response chunk in retrieved-a-win to be able to perform the key press.

Similarly, retrieved-a-non-win does not need to retrieve the current response either since it could

just retrieve a different response the way that guess-other does now and guess-other could be

eliminated from the model. If we were not using production compilation those might be useful

changes to make to the model, but production compilation should eliminate those retrievals from

the model over time anyway so for now we will not make those changes to the model.

Looking at the encoding productions, encode-num-1 and encode-num-2, we see that the number

chunks are also referenced by name for the trial encoding. If we go back and look at our first run

with compilation turned on we can see that production0 and production1 which the model

learned in fact also have references to specific chunks, three-0 and two-0 respectively, and as we

saw with production3 that means it is not going to be able to recreate and strengthen those

productions. If we want to see the model response times decrease through eliminating the

retrievals in that portion of the task we are also going to have to change how the model encodes

the number chunks. In this case we need to have chunks in the num1 and num2 slots of the trial

so that the similarities between those slot contents and the requested values will allow the model

to retrieve a “close” trial chunk through partial matching when it does not have a perfectly

matching trial chunk to retrieve. Thus, we cannot use the same change we did with the response

chunks and just use the value of the visual-rep slot from the numbers in the trial chunks. Unlike

the response chunks however the model will not need to retrieve the number chunks using the

value from the slots of the trial chunk. Therefore we will not have the problem of a direct

retrieval being necessary and all we need to do is provide a way for the model to reference the

number chunks during the initial encoding without using the name of the chunk currently in the

retrieval buffer.

That means that we will need to add an additional slot to the number chunk-type to hold the

reference we want to use. We will call that slot representation and make this change to the

chunk-type specification in the model:

(chunk-type number visual-rep representation)

That will then require making the following changes to the encoding production to use that slot’s

value instead of the chunk in the retrieval buffer:

 (p encode-num-1

 =goal>

 isa task

 state encode-num-1

 =retrieval>

 isa number

 representation =number

 =imaginal>

 isa trial

 ==>

 =imaginal>

 num1 =number

 =goal>

 state find-num-2

 +visual-location>

 isa visual-location

 > screen-x current

 :attended nil)

 (p encode-num-2

 =goal>

 isa task

 state encode-num-2

 =retrieval>

 isa number

 representation =number

 =imaginal>

 isa trial

 ==>

 =imaginal>

 num2 =number

 =goal>

 state retrieve-past-trial)

Now we have to determine what value to store in that slot. It has to be a chunk so that

similarities can be set, and there are basically two ways to handle that. One is to simply store the

name of the number chunk itself in the representation slot when it is created. That would look

like this in the current model:

(add-dm (zero isa number visual-rep "0" representation zero)

 (one isa number visual-rep "1" representation one)

 (two isa number visual-rep "2" representation two)

 (three isa number visual-rep "3" representation three))

The other option would be to create a more distributed representation which involves separate

chunks for the visual mapping and the number itself. That might look something like this in the

current model (though there are many ways to accomplish that):

(chunk-type number value)

(chunk-type number-visual visual-rep representation)

(add-dm (zero isa number value 0)

 (one isa number value 1)

 (two isa number value 2)

 (three isa number value 3)

 (isa number-visual visual-rep "0" representation zero)

 (isa number-visual visual-rep "1" representation one)

 (isa number-visual visual-rep "2" representation two)

 (isa number-visual visual-rep "3" representation three))

Note that for the number-visual chunks that perform the mapping from the visual representation

to a number above there are no chunk names specified. The chunk name is optional when

creating chunks and if one is not provided the system will generate a new name automatically.

That reinforces the notion that the name of those chunks does not matter and only the content is

important, but the downside to doing that is that it may make debugging the model more difficult

since there will not be easily recognizable names in the trace or other inspection tools.

Which mechanism one chooses to use will depend on exactly what is required in the model and

how one believes people encode that information. For this task we will go with the simpler

single chunk representation, but you are welcome to try other alternatives and investigate the

results as an additional exercise.

After making those changes, but before trying production compilation again, we should run the

model without it to make sure that it still performs the task correctly. We need to remove the

parameter setting which enables production compilation and also remove the seed value so that

we can test it over multiple trials. Here are the results from the updated model:

> (choice-game-experiment 40)

Average Score of 40 trials

2.67 5.15 6.75 7.35 8.00 7.50 8.30 8.30 7.95 8.05 8.75 8.68 8.25 8.68 8.48 8.65 8.52 8.55 9.23 8.90

Average Response times

7.73 4.93 3.05 2.30 2.10 1.80 1.66 1.54 1.47 1.42 1.32 1.30 1.28 1.26 1.24 1.24 1.22 1.22 1.18 1.17

It still appears to be learning both with respect to increasing scores and decreasing response

times. So we will re-enable production compilation, set the seed parameter again (so that we can

recreate any issues which occur), and run it to see what happens with production compilation

now. We will not include all of the trace here, but will include the details for important sections

related both to the issues discussed above and any new issues which arise.

Looking at the productions learned during the initial encoding steps, like production0 and

production1, we now see that they contain references to the number chunks themselves instead

of the copy in the retrieval buffer when modifying the imaginal buffer:

Production Compilation process started for ENCODE-NUM-2

 Production ATTEND-NUM-2 and ENCODE-NUM-2 are being composed.

 New production:

(P PRODUCTION1

 "ATTEND-NUM-2 & ENCODE-NUM-2 - TWO"

 =GOAL>

 ISA TASK

 STATE ATTEND-NUM-2

 =IMAGINAL>

 ISA TRIAL

 =VISUAL>

 ISA VISUAL-OBJECT

 VALUE "2"

 ==>

 =IMAGINAL>

 NUM2 TWO

 =GOAL>

 STATE RETRIEVE-PAST-TRIAL

)

Parameters for production PRODUCTION1:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

In addition to that, on the second trial we see production1 being recreated and strengthened:

 11.944 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-2

Production Compilation process started for ENCODE-NUM-2

 Production ATTEND-NUM-2 and ENCODE-NUM-2 are being composed.

 Recreating production PRODUCTION1

Parameters for production PRODUCTION1:

 :utility -0.925

 :u 2.449

 :at 0.050

 :reward NIL

 Setting previous production to ENCODE-NUM-2.

Thus, those changes to the model seem to have achieved their desired effects. Similarly, we now

see production3 looking like this:

Production Compilation process started for RESPOND

 Production NO-PAST-TRIAL and RESPOND are being composed.

 New production:

(P PRODUCTION3

 "NO-PAST-TRIAL & RESPOND - RESPONSE-1"

 =GOAL>

 ISA TASK

 STATE PROCESS-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 ?MANUAL>

 STATE FREE

 ?RETRIEVAL>

 STATE ERROR

 ==>

 =IMAGINAL>

 RESPONSE "s"

 =GOAL>

 STATE DETECT-FEEDBACK

 +MANUAL>

 ISA PRESS-KEY

 KEY "s"

)

Parameters for production PRODUCTION3:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

and on the third trial we see that it is now also recreated:

Production Compilation process started for RESPOND

 Production NO-PAST-TRIAL and RESPOND are being composed.

 Recreating production PRODUCTION3

Parameters for production PRODUCTION3:

 :utility -1.089

 :u 2.866

 :at 0.050

 :reward NIL

Running the model until we see it successfully retrieve a past trial shows the following in the

trace:

 45.916 PROCEDURAL PRODUCTION-FIRED RETRIEVE-PAST-TRIAL

Production Compilation process started for RETRIEVE-PAST-TRIAL

 Production ENCODE-NUM-2 and RETRIEVE-PAST-TRIAL are being composed.

 Recreating production PRODUCTION2

Parameters for production PRODUCTION2:

 :utility 7.117

 :u 6.123

 :at 0.050

 :reward NIL

 Setting previous production to RETRIEVE-PAST-TRIAL.

 53.364 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TRIAL2-0

 53.414 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-WIN

Production Compilation process started for RETRIEVED-A-WIN

 Cannot compile RETRIEVE-PAST-TRIAL and RETRIEVED-A-WIN because the time between them

exceeds the threshold time.

 Setting previous production to RETRIEVED-A-WIN.

Previously we saw that retrieved-a-win was not valid for compilation, but now it is saying that

the threshold time has been exceeded. That means the production is valid for composition, but

too much time passed between the previous production’s firing and the firing of this production.

That happened because the retrieval took almost 7.5 seconds to complete. Whether or not this is

a problem, like many such issues, depends on one’s hypothesis for what is happening when

people learn in such tasks, and there are potentially multiple issues involved here. The first is

whether or not one considers a 7.5 second retrieval to be reasonable for this task. If not, then one

may want to adjust the declarative memory parameters to change that. Without data for

comparison we are going to just assume that that retrieval is acceptable. Then, if one assumes

that the retrieval time is acceptable, the next issue is whether one believes that the declarative

knowledge must be strengthened prior to its being composed into procedural knowledge (have an

activation value sufficient for it to be retrieved within the compilation threshold time) or whether

production compilation should start compiling the knowledge immediately. The default setting

for the production compilation threshold time is three seconds, but that value is just a

conservative starting point for the system and not a recommended value. For the purpose of this

exercise we are going to adjust the threshold time parameter so that compilation can occur right

away. To do that we must change the value of the :tt parameter to something larger than 7.5, and

as a first pass we will choose 8 so that this pair of productions will fire. Thus, we will add this

additional parameter setting to the model:

(sgp :epl t :pct t :tt 8)

save the file and reload it. Now when the model gets to that point we see that it creates this

production:

 53.414 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-WIN

Production Compilation process started for RETRIEVED-A-WIN

 Production RETRIEVE-PAST-TRIAL and RETRIEVED-A-WIN are being composed.

 New production:

(P PRODUCTION27

 "RETRIEVE-PAST-TRIAL & RETRIEVED-A-WIN - TRIAL2-0"

 =GOAL>

 ISA TASK

 STATE RETRIEVE-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 NUM1 TWO

 NUM2 ONE

 ==>

 =IMAGINAL>

 =GOAL>

 STATE RESPOND

 +RETRIEVAL>

 ISA RESPONSE

 KEY "s"

)

Parameters for production PRODUCTION27:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

 Setting previous production to RETRIEVED-A-WIN.

That production makes the request for a particular response, "s", based on testing the specific

values encoded in the trial chunk without needing to retrieve a similar trial. That is what we

want to see the model do. So, now all we need to do for verifying what happens symbolically in

the model is see what happens when the model retrieves a non-winning past trial. However, after

running many more trials that production still does not show up in the trace as being selected and

fired.

One option would be to just ignore it since it did not fire and move on to testing the model over

the whole task, but perhaps it did not fire because of the particular seed value we have set for the

pseudo-random number generator. We want the model to work without requiring any particular

seed value being set, and that production seems like it should fire sometimes. So, before moving

on we will do some more tests to see if that production ever does fire, and if so what the results

from production compilation are.

One way to test this would be to just remove the seed setting and then run the model repeatedly

looking at the trace each time until we find one where it fires (we would probably also want to

display the starting seed each time as was shown in the unit 3 modeling text so that we can

recreate the trial once we find it). In some situations doing things that way might be acceptable,

but it can be a very tedious process and might not be feasible in all situations. Something that

can be useful to take advantage of is the fact that ACT-R is running within Lisp and one can use

Lisp both within the model and in the running of the model to make those types of debugging

tasks more automatic. Here we will show one way that one could go about finding a trial when a

particular production fires.

To find a game in which that production fires we define a variable and have the production set it

to true when it fires using a !eval! action in the production. The variable should be defined

outside of the model definition like this:

(defvar *used-it* nil)

and then a !eval! action like this can be added to the production:

(p retrieved-a-non-win

 =goal>

 isa task

 state process-past-trial

 =retrieval>

 isa trial

 - result win

 response =response

 ==>

 !eval! (setf *used-it* t)

 +retrieval>

 isa response

 key =response

 =goal>

 state guess-other)

Now if we check that value after a model run we will know whether or not the production fired

without having to read through the trace. In fact, if we turn off the trace and show the seed when

the model gets reset we can use a simple loop to run the model repeatedly until there is a run

when that production fires and use the found seed value to recreate the trial. Here is some code

that does that running one game at a time until it finds that the production has fired:

>(loop

 (when *used-it* (return))

 (choice-game-experiment 1))

:SEED (442475680 39210) (default NO-DEFAULT) : Current seed of the random number

generator

Average Score of 1 trials

8.00 6.00 8.00 4.00 10.00 6.00 6.00 8.00 6.00 10.00 8.00 4.00 10.00 6.00 10.00 6.00

6.00 8.00 8.00 6.00

Average Response times

5.07 4.88 3.17 2.72 1.40 1.92 1.99 1.37 1.32 1.15 1.22 1.22 1.13 1.36 1.37 1.16 1.12

1.15 1.00 1.09

:SEED (442475680 48001) (default NO-DEFAULT) : Current seed of the random number

generator

Average Score of 1 trials

7.00 9.00 10.00 10.00 10.00 10.00 10.00 9.00 7.00 8.00 10.00 8.00 8.00 10.00 6.00 8.00

9.00 10.00 10.00 10.00

Average Response times

6.41 3.65 1.87 1.98 1.37 1.34 1.16 1.30 1.29 1.33 1.12 1.21 1.27 1.11 1.08 1.07 1.07

1.05 1.02 1.07

:SEED (442475680 57405) (default NO-DEFAULT) : Current seed of the random number

generator

Average Score of 1 trials

1.00 10.00 10.00 6.00 8.00 4.00 6.00 8.00 6.00 6.00 6.00 8.00 10.00 8.00 6.00 8.00

6.00 2.00 10.00 10.00

Average Response times

9.38 4.24 1.48 1.62 1.67 1.59 1.13 1.25 1.33 1.29 1.15 1.27 1.05 1.09 1.12 1.05 1.08

1.08 1.12 .91

:SEED (442475680 67093) (default NO-DEFAULT) : Current seed of the random number

generator

Average Score of 1 trials

-1.00 5.00 5.00 6.00 5.00 6.00 7.00 10.00 8.00 9.00 9.00 9.00 9.00 9.00 10.00 9.00

10.00 8.00 8.00 8.00

Average Response times

8.93 3.33 5.47 3.23 2.45 2.66 1.46 1.49 1.37 1.55 1.15 1.10 1.13 1.17 1.07 1.14 1.02

1.22 1.16 1.07

NIL

If you try that you will see different seed values displayed, but eventually it should stop and the

last seed value shown will result in a game where that production fires. Before looking at the

trace of that trail we will first remove that !eval! from the production because that will cause

problems for production compilation. We will then set the seed to (442475680 67093) since that

is the value we found above and turn the trace back on. Then we will run it a trial at a time to

find where that production fires.

We find that production firing on the fourth trial:

 36.557 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TRIAL2-0

 36.607 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-NON-WIN

Production Compilation process started for RETRIEVED-A-NON-WIN

 Production RETRIEVED-A-NON-WIN is not valid for compilation

 because it has conditions with modifiers on slot tests

 36.609 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL RESPONSE-1

and it indicates that the production is not valid for compilation because it has modifiers on the

slot tests. Here is the production again for reference:

(p retrieved-a-non-win

 =goal>

 isa task

 state process-past-trial

 =retrieval>

 isa trial

 - result win

 response =response

 ==>

 +retrieval>

 isa response

 key =response

 =goal>

 state guess-other)

The slot test highlighted above is the only one that has a modifier so that must be what is

stopping compilation.

That is an important issue to keep in mind when working with production compilation -- it

cannot compile productions which have tests for inequalities. However it is often convenient to

have such tests in the productions which one wants to be compiled. There are a couple of ways

one can deal with that. The first is to replace the production with one or more productions that

perform the same calculation using a positive test. In this case that would mean adding

retrieved-a-lose and retrieved-a-draw productions which test for those values explicitly as

retrieved-a-win does. Since there are only three possible options that would not be a difficult

change to make for the model, but in other situations that might not be feasible because there

may be too many choices or not all the possibilities may be known in advance. An alternative,

which we will use here, is to just bind the value from the slot to a variable in the buffer test and

then perform the inequality test in Lisp code. That Lisp test must use a !safe-eval! operator to

indicate that it is valid for production compilation because using a !eval! condition will make the

production invalid for composition. Here is the updated version of the production which should

be valid for production compilation:

 (p retrieved-a-non-win

 =goal>

 isa task

 state process-past-trial

 =retrieval>

 isa trial

 result =result

 response =response

 !safe-eval! (not (equal =result 'win))

 ==>

 +retrieval>

 isa response

 key =response

 =goal>

 state guess-other)

If we save that change and run the model through four trials again we will now see the following

production compilation trace at that time:

 36.607 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-NON-WIN

Production Compilation process started for RETRIEVED-A-NON-WIN

 Production RETRIEVE-PAST-TRIAL and RETRIEVED-A-NON-WIN are being composed.

 New production:

(P PRODUCTION21

 "RETRIEVE-PAST-TRIAL & RETRIEVED-A-NON-WIN - TRIAL2-0"

 =GOAL>

 ISA TASK

 STATE RETRIEVE-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 NUM1 THREE

 NUM2 TWO

 !SAFE-EVAL! (NOT (EQUAL (QUOTE LOSE) (QUOTE WIN)))

 ==>

 =IMAGINAL>

 =GOAL>

 STATE GUESS-OTHER

 +RETRIEVAL>

 ISA RESPONSE

 KEY "s"

)

Parameters for production PRODUCTION21:

 :utility NIL

 :u 0.000

 :at 0.050

 :reward NIL

This time it created a production which will retrieve the response for "s" whenever it has

encoded a trial of the numbers three and two. The !safe-eval! from the retrieved-a-non-win

production has been included in the conditions of this production, but because the retrieval

chunk's contents were compiled into the production the test is now explicitly testing that the

symbol lose is not equal to the symbol win which will always be true. Unlike the compilation of

retrieve-past-trial and retrieved-a-win however this production is not actually mapping a specific

trial to a particular result because the production which fires after retrieved-a-non-win, guess-

other, will retrieve a different response to make since the model does not want to make the

response that did not lead to a win:

(p guess-other

 =goal>

 isa task

 state guess-other

 =retrieval>

 isa response

 key =key

 ==>

 +retrieval>

 isa response

 - key =key

 =goal>

 state respond)

Therefore when it retrieves a non-winning trial it is not going to immediately create a new

production which performs a specific move. Since retrieved-a-non-win does not seem to fire

very often (we had to search to find a game in which it did) that is not likely to be an issue in the

model, but it is worth keeping in mind for any analysis we do later.

Before moving on to looking at the performance there is one last detail to mention. The guess-

other production shown above includes a negative modifier in its request to the retrieval buffer

so that it will retrieve a response which does not match the current one. Unlike inequality tests

in the conditions however an inequality in a request is allowed for production compilation and

we see this production as the result of production compilation for retrieved-a-non-win and guess-

other in the trace and it keeps that negation in the request:

 36.659 PROCEDURAL PRODUCTION-FIRED GUESS-OTHER

Production Compilation process started for GUESS-OTHER

 Production RETRIEVED-A-NON-WIN and GUESS-OTHER are being composed.

 New production:

(P PRODUCTION22

 "RETRIEVED-A-NON-WIN & GUESS-OTHER - RESPONSE-1"

 =GOAL>

 ISA TASK

 STATE PROCESS-PAST-TRIAL

 =RETRIEVAL>

 ISA TRIAL

 RESPONSE "s"

 RESULT =RESULT

 !SAFE-EVAL! (NOT (EQUAL =RESULT (QUOTE WIN)))

 ==>

 =GOAL>

 STATE RESPOND

 +RETRIEVAL>

 ISA RESPONSE

 - KEY "s"

)

Now we have verified that production compilation is able to compose the starting productions

from the task into productions that seem reasonable. The next thing to investigate is whether or

not the compiled productions are being used by the model and if so whether they are having an

effect on how it performs the task.

There are many ways one can look for that, but here we will show how the "Production History"

tool in the Environment can be useful with production compilation. First, a "Production History"

window must be opened before running the model. Then we will run the model through the

experiment with the trace turned off, but with the seed value still set so that we can recreate this

run if we want to look at it again in detail. Here is the result of the run:

CG-USER(96): (choice-game-experiment 1)

Average Score of 1 trials

-1.00 5.00 7.00 9.00 8.00 7.00 10.00 8.00 10.00 9.00 9.00 8.00 10.00 9.00 10.00 8.00 10.00 10.00 8.00 9.00

Average Response times

8.93 3.33 4.72 1.96 2.38 1.72 1.80 1.32 1.20 1.23 1.14 1.14 1.11 1.09 1.03 1.09 1.10 1.15 1.12 1.07

Looking at the results displayed the model still seems to be performing the task correctly and is

still getting faster and more accurate as it performs the task. So there do not appear to be any

problems introduced because of the productions that are being composed. Now we will look to

see whether or not those new productions are being used by the model. To do that we will go to

the production history window and press the "Get history" button. It may take a little while for

the display to complete, but once it does there should be a lot of new productions listed and

many columns of data. It may help to check the "Hide empty columns" box at the bottom to

remove the output for conflict resolution events that did not result in selecting a production. The

results will look something like this:

We discussed how to read the results of this display previously, but there is something new about

this display because of production compilation. The newly compiled productions have white

boxes in some columns which do not report any details when the mouse is placed over them.

Those boxes indicate that that production did not exist at that time. Thus the first non-white box

in a row indicates approximately when the production was created because that was the first time

it was attempted to be selected.

The composed productions are also displayed in the order in which they were created. This

provides us with a fairly easy way to determine if the model is continuing to learn new

productions throughout the task, or if there appears to be a point at which it has learned all the

new productions that it can. If we zoom out on the display by hitting the "-" button, turn off the

vertical lines by hitting the "Grid" button, scroll down to the last new production, and then scroll

right to see the end of the task we will see something like this:

That shows that even at the end of the task this model was still composing new productions.

That may or may not be a good thing depending on what one was expecting for the task. Given

the overall length of our task, approximately 10 minutes, it does not seem unreasonable that there

are still opportunities for further learning at the end, but in other models one might expect

compilation to slow down or stop before the end of the task.

Now we will start looking at the productions which the model has generated in more detail. If

there were not as many then it might be worthwhile to use the "Procedural viewer" to look at all

of them to see what they look like and what their utilities are at the end. However, since there

are more than 100 composed productions and there did not appear to be any problems as it

performed the task we are going to just look for productions that have an interesting history to

investigate. In particular, the things that will be considered interesting are productions which

never match because those might indicate a problem which we did not notice previously and new

productions which are actually used by the model because those should be the ones that we are

expecting it to learn and use.

There are a few ways to find productions which are never matched based on the details recorded

automatically by ACT-R. One way is by looking at the history grid for rows with no orange or

green boxes in them. If we zoom out they should be fairly easy to locate, and some of the first

few productions learned, production0, produciton4, production5, and production6 all seem to

have that property as do several others. Another way to find them would be to use the

"Procedural viewer" to look for productions which have a :utility parameter value of nil. That

parameter records the utility the production had the last time it matched, and if it is nil it means

that it has never matched. We can also test that parameter value in Lisp code because we can get

the production parameters using the spp command. That allows us to do something like this to

create a list of all the productions which have a nil :utility parameter setting:

> (mapcar 'car (remove-if (lambda (x) x) (no-output (spp :name :utility)) :key 'second))

(RESPOND-WHEN-RESPONSE-FAILURE PRODUCTION0 PRODUCTION4 PRODUCTION5 PRODUCTION6 PRODUCTION11

PRODUCTION12 PRODUCTION22 PRODUCTION31 PRODUCTION39 ...)

However we go about finding them, there are 21 such productions in this model. We will not

look at each individually here, but what you will find if you do is that they basically fall into four

general categories which we will discuss. Before continuing, you might want to look them over

and see if you can find the similarities among them yourself.

The first category are those that we already knew would not be used -- productions which are

composed from a production which makes a response and one which detects the result of that

response. Those involve either detect-feedback or detect-trial-start as the second production in

the pair. Since we expected these to occur it does not present any issues to deal with.

The next category are productions for rare situations, particularly those dealing with the

retrieved-a-non-win production. We know that is not a common occurrence in the model since

we had to search to find a game in which it occurred, and looking at the history we see that

retrieved-a-non-win only matches twice in this run. Because of that the productions composed

from it are also not going to have an opportunity to match either. That does not seem to be a

problem we need to investigate any further. One other production which seems to fall into this

category is actually one of the starting productions: respond-when-response-failure. That

production is only needed if the model ever fails to retrieve a response, and since that should not

happen we would not expect to see that production selected and fired. It could probably be

removed from the starting model without affecting things, but it is often safest to include

productions like that in a model so that it can deal with unexpected situation. It is possible, no

matter how unlikely, for the noise in the activations to push all chunks below the retrieval

threshold and if the model does not have any productions to deal with failures to retrieve it will

be stuck and unable to perform the task.

Another category of productions which does not match are those created late in the run which

have very specific constraints. Presumably those productions are not matching because that

specific pair of numbers is not presented again before the end of the experiment. Here are two

examples of those productions:

(P PRODUCTION900

 "RETRIEVE-PAST-TRIAL & PRODUCTION36 - TRIAL30-0"

 =GOAL>

 ISA TASK

 STATE RETRIEVE-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 NUM1 TWO

 NUM2 ONE

 ?MANUAL>

 STATE FREE

 ==>

 =IMAGINAL>

 RESPONSE "f"

 =GOAL>

 STATE DETECT-FEEDBACK

 +MANUAL>

 ISA PRESS-KEY

 KEY "f"

)

(P PRODUCTION1092

 "PRODUCTION72 & PRODUCTION36 - TRIAL4-0"

 =GOAL>

 ISA TASK

 STATE ATTEND-NUM-2

 =IMAGINAL>

 ISA TRIAL

 NUM1 ZERO

 =VISUAL>

 ISA VISUAL-OBJECT

 VALUE "2"

 ?MANUAL>

 STATE FREE

 ==>

 =IMAGINAL>

 NUM2 TWO

 RESPONSE "f"

 =GOAL>

 STATE DETECT-FEEDBACK

 +MANUAL>

 ISA PRESS-KEY

 KEY "f"

)

Production900 is the type of production that we were expecting the model to learn. It maps a

specific imaginal chunk representation to a specific action. Production1092 seems to take that

even farther by performing the second step of the imaginal chunk modification together with the

response. Seeing these productions is a good sign because they are what we expected and are

composed from previously composed productions so that means the model is actually using

some composed productions which we will look into further shortly.

The final category of productions which are not being matched are productions composed from

attend-num-1 and encode-num-1. There are four such productions, one for each of the numbers

retrieved (zero, one, two, and three). They all have the same structure and here is one of them

for reference:

(P PRODUCTION0

 "ATTEND-NUM-1 & ENCODE-NUM-1 - TWO"

 =GOAL>

 ISA TASK

 STATE ATTEND-NUM-1

 =IMAGINAL>

 ISA TRIAL

 =VISUAL>

 ISA VISUAL-OBJECT

 VALUE "2"

 ==>

 =IMAGINAL>

 NUM1 TWO

 =GOAL>

 STATE FIND-NUM-2

 +VISUAL-LOCATION>

 ISA VISUAL-LOCATION

 :ATTENDED NIL

 > SCREEN-X CURRENT

)

We discussed this production before and expected it to help the model speed up over time, so the

question is why isn't it being selected? If we look for the similar productions which compose

attend-num-2 and encode-num-2, like production1:

(P PRODUCTION1

 "ATTEND-NUM-2 & ENCODE-NUM-2 - THREE"

 =GOAL>

 ISA TASK

 STATE ATTEND-NUM-2

 =IMAGINAL>

 ISA TRIAL

 =VISUAL>

 ISA VISUAL-OBJECT

 VALUE "3"

 ==>

 =IMAGINAL>

 NUM2 THREE

 =GOAL>

 STATE RETRIEVE-PAST-TRIAL

)

We see that it is matched multiple times over the course of the experiment so it seems odd that

production0 is not also matched. To figure out why production0 is not matched we can use the

history tool to look at the why-not information for production0 when we would expect it to be

matched, which is when attend-num-1 matches since that is the parent production with which it

should be competing. To find that it is probably easiest to zoom in again and restore the grid

lines on the history tool. The first column that we find which has attend-num-1 selected while

production0 exists is at time 11.545 and this is what we find when we place the cursor over the

red box in the production0 row:

It is not matching because the imaginal buffer is empty. The question then becomes why is the

imaginal buffer empty at that time? If you look at the model's productions you may be able to

ascertain why that is happening, but if not there are multiple ways to look into that further. One

would of course be to run it again with the trace on and look at the trace to see if you can

determine why. Another option would be to step through the operation with the stepper tool so

that you can inspect things more closely as they occur. Something else which can be done, and

which we will use here, is to use the buffer trace tools from the Environment instead of the text

trace to try to determine what is happening.

To do that we need to open one of the trace tools before running the model and we will use the

"Horiz. Buffer Trace" here. We need to run the model again and then get the trace. Since we

know this happens on the second trail we can just run the model for two trials instead of waiting

for it to run the entire experiment using the choice-game-trials command:

> (choice-game-trials :n 2 :reset t)

Now we can get the trace by hitting the "Get trace" button in the viewer and if we scroll to

around the time when this occurs it may be more apparent what is happening:

There we see that the imaginal buffer is empty at time 11.545 when attend-num-1 is selected

because the imaginal module is busy creating a trial chunk as requested by the detect-trial-start

production. Production0, like encode-num-1 which it is composed from, requires that there be a

chunk in the imaginal buffer to match. Since attend-num-1 does not have that requirement it can

be selected while the imaginal module is still busy. That is another important thing to remember

about production compilation - a composed production will have to meet the constraints imposed

by both parents. If, as is the case here, the constraints for the second production take time to

occur then that composed production may not compete with its first parent and may never match.

While it seems like this is a lost opportunity for speedup in the model, looking at the other

information in the graphic trace actually shows that it does not really matter. That is because the

retrieval of the number chunk also completes before the imaginal chunk is created. Thus, the

time spent creating that imaginal chunk determines when encode-num-1 (or our composed

production0) will be able to be selected and fired. Eliminating attend-num-1 and the number

retrieval through composition would not change that timing. If we wanted to see a speedup from

composing these productions we would have to adjust when the model makes the request to

create the imaginal chunk so that it does not dominate this timing or change the time it takes for

imaginal actions to occur (which is not recommended). That does not seem like something

worth changing in the model since we are primarily expecting the speedup to occur because of

composing the specific response information in this model, but you are welcome to try that as an

additional exercise if you like.

Now that we have looked at the composed productions which are not matching we will look at

those which are being selected and fired to make sure that the model is learning to use the new

productions that we expected. Like finding those that were not matched there are multiple

options available for finding those which do match. However, there is not a simple parameter or

other automatically recorded information which we can test to do so. Thus, getting this

information will require either using the history tool or setting additional parameters in the model

before running it. Probably the easiest way is to again use the production history grid, and this

time instead of looking for empty rows we are looking for rows with lots of green and orange in

them. If we want to see which productions are selected we can get that from the model trace if

we enable it, but to see those that match but which are not selected we will also have to enable

either the :cst or :crt parameter to include the additional conflict resolution information. If we

want to collect that information in a list or process it in code then we would have to explicitly

collect the information while the model runs using the :conflict-set-hook parameter. Using the

conflict-set-hook is beyond the scope of this document, but details can be found in the reference

manual.

Looking at the history there are lots of new productions which are matching frequently, but there

are only a few which are getting selected and fired frequently. Those productions are

production2, production13, production36, production53, production72, production126,

production194, and production297. Those productions seem to fall into two categories:

productions which are collapsing the steps needed for encoding the second item and productions

which are making a response based on a retrieved response chunk. We expected items of the

first type to be created and used, but the second type, production36 and production 297, are not

quite what we were looking for:

 (P PRODUCTION36

 "RETRIEVED-A-WIN & RESPOND - RESPONSE-3"

 =GOAL>

 ISA TASK

 STATE PROCESS-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 =RETRIEVAL>

 ISA TRIAL

 RESPONSE "f"

 RESULT WIN

 ?MANUAL>

 STATE FREE

 ==>

 =IMAGINAL>

 RESPONSE "f"

 =GOAL>

 STATE DETECT-FEEDBACK

 +MANUAL>

 ISA PRESS-KEY

 KEY "f"

)

That production has removed a retrieval which should reduce the time it takes to respond, but it

is not the main type of production we were looking to create. That production does not map the

trial information to a particular response. It just eliminates the retrieval of the response chunk

that occurred before it made the response. The productions we really want the model to start

using will be a combination of retrieve-past-trial and retrieved-a-win or another production

which has been composed from retrieved-a-win. So, now we will look for some of those and see

why they are not being selected.

Looking through the generated productions we do find instances of the productions we want, like

production35 for example and production900 which was shown above:

(P PRODUCTION35

 "RETRIEVE-PAST-TRIAL & RETRIEVED-A-WIN - TRIAL4-0"

 =GOAL>

 ISA TASK

 STATE RETRIEVE-PAST-TRIAL

 =IMAGINAL>

 ISA TRIAL

 NUM1 TWO

 NUM2 TWO

 ==>

 =IMAGINAL>

 =GOAL>

 STATE RESPOND

 +RETRIEVAL>

 ISA RESPONSE

 KEY "f"

)

Looking at the history shows productions like that do match a few times, but not enough to raise

their utilities to a point where they are able to be selected over the original productions. Since it

is creating them and they do match, that is all we are concerned with for now.

Now that we have looked at the productions the model learns and seen that they do not cause any

problems for the model's ability to do the task we can start looking at the effect they have on the

model's performance on the task. To do that we will want to remove the seed setting from the

model and run it over multiple trials to see the average results. When doing that it will also be a

good idea to look at the individual game outcomes as well to make sure there are not any

problems along the way, and printing the seed for each will allow us to recreate a bad run if we

see one.

To help with that we can use the optional parameter of the choice-game-experiment function to

have it output the results for each game run before displaying the average at the end. Here is the

result of running 10 games with the individual game results and each game's starting seed shown:

CG-USER(32): (choice-game-experiment 10 t)

:SEED (1038786995 0) (default NO-DEFAULT) : Current seed of the random number generator

Score

 0(10) 6(10) 2(10) 6(10) 4(10) 4(10) 6(10) 5(10) 5(10) 6(10) 8(10) 8(10)

8(10) 10(10) 6(10) 8(10) 8(10) 10(10) 10(10) 10(10)

Average response times

 5.060 5.306 2.907 2.399 2.761 2.393 1.847 1.368 1.662 1.753 1.767 1.464

1.250 1.130 1.346 1.121 1.168 1.053 1.152 1.147

:SEED (1038786995 9420) (default NO-DEFAULT) : Current seed of the random number generator

Score

 -2(10) 6(10) -2(10) 4(10) 6(10) 8(10) 8(10) 8(10) 0(10) 4(10) 10(10) 8(10)

4(10) 10(10) 2(10) 10(10) 10(10) 10(10) 10(10) 10(10)

Average response times

 10.924 3.750 3.494 1.549 3.262 1.478 1.377 1.463 1.529 1.150 1.504 1.373

1.126 1.308 1.117 1.334 1.036 1.122 1.061 1.104

:SEED (1038786995 19756) (default NO-DEFAULT) : Current seed of the random number generator

Score

 3(10) 6(10) 8(10) 7(10) 8(10) 9(10) 9(10) 10(10) 10(10) 9(10) 9(10) 10(10)

10(10) 8(10) 10(10) 9(10) 8(10) 10(10) 9(10) 8(10)

Average response times

 5.591 5.522 3.462 1.814 1.761 2.177 1.364 1.552 1.245 1.229 1.197 1.169

1.126 1.157 1.077 1.107 1.077 1.043 1.047 1.024

:SEED (1038786995 29554) (default NO-DEFAULT) : Current seed of the random number generator

Score

 0(10) 9(10) 8(10) 9(10) 10(10) 9(10) 9(10) 9(10) 10(10) 10(10) 8(10) 9(10)

10(10) 9(10) 7(10) 10(10) 9(10) 10(10) 9(10) 10(10)

Average response times

 9.306 2.895 2.755 2.131 1.336 1.647 1.327 1.353 1.128 1.093 1.209 1.101

1.126 1.114 1.286 0.956 1.127 1.013 1.129 1.012

:SEED (1038786995 39441) (default NO-DEFAULT) : Current seed of the random number generator

Score

 7(10) 4(10) 9(10) 7(10) 9(10) 9(10) 8(10) 5(10) 10(10) 7(10) 10(10) 10(10)

7(10) 7(10) 9(10) 8(10) 9(10) 7(10) 10(10) 9(10)

Average response times

 6.860 5.057 1.840 2.642 1.310 1.853 1.377 1.606 1.203 1.248 1.130 1.145

1.414 1.211 1.140 1.108 1.133 1.114 1.074 1.045

:SEED (1038786995 48997) (default NO-DEFAULT) : Current seed of the random number generator

Score

 2(10) 6(10) 6(10) 0(10) 2(10) 8(10) 10(10) 8(10) 8(10) 6(10) 8(10) 6(10)

6(10) 10(10) 6(10) 8(10) 8(10) 10(10) 8(10) 10(10)

Average response times

 7.082 3.751 3.082 2.398 4.070 1.776 1.359 1.274 1.292 1.241 1.124 1.180

1.112 1.037 1.106 1.107 1.138 1.045 1.039 1.004

:SEED (1038786995 58513) (default NO-DEFAULT) : Current seed of the random number generator

Score

 2(10) 3(10) 4(10) 7(10) 5(10) 9(10) 9(10) 10(10) 10(10) 10(10) 10(10) 8(10)

10(10) 10(10) 10(10) 10(10) 10(10) 10(10) 10(10) 10(10)

Average response times

 8.396 6.083 4.518 3.158 3.379 1.592 1.679 1.520 1.600 1.195 1.453 1.092

1.156 1.160 1.251 1.088 1.089 1.030 1.068 1.005

:SEED (1038786995 69328) (default NO-DEFAULT) : Current seed of the random number generator

Score

 1(10) 4(10) 6(10) 4(10) 6(10) 8(10) 8(10) 8(10) 8(10) 6(10) 2(10) 4(10)

4(10) 8(10) 4(10) 2(10) 10(10) 6(10) 10(10) 8(10)

Average response times

 7.608 3.732 2.191 1.710 1.623 1.445 1.297 1.271 1.309 1.095 1.203 1.126

1.132 1.002 1.225 1.205 1.070 1.116 0.939 0.971

:SEED (1038786995 78531) (default NO-DEFAULT) : Current seed of the random number generator

Score

 4(10) 4(10) 7(10) 9(10) 4(10) 9(10) 10(10) 9(10) 9(10) 8(10) 9(10) 9(10)

9(10) 10(10) 10(10) 10(10) 9(10) 10(10) 10(10) 10(10)

Average response times

 6.735 5.447 3.299 1.915 1.780 1.590 1.340 1.236 1.400 1.631 1.563 1.222

1.228 1.107 1.063 1.140 1.086 1.034 1.042 1.023

:SEED (1038786995 88402) (default NO-DEFAULT) : Current seed of the random number generator

Score

 5(10) 1(10) 8(10) 8(10) 8(10) -2(10) 8(10) 6(10) 8(10) 8(10) 6(10) -2(10)

4(10) 8(10) 8(10) 6(10) 4(10) 8(10) 10(10) 6(10)

Average response times

 5.960 3.690 2.941 1.691 1.515 2.341 1.416 1.792 1.339 1.143 1.130 1.268

1.226 1.252 1.192 1.211 1.074 1.091 1.055 1.031

Average Score of 10 trials

2.20 4.90 5.60 6.10 6.20 7.10 8.50 7.80 7.80 7.40 8.00 7.00 7.20 9.00 7.20 8.10 8.50 9.10 9.60 9.10

Average Response times

7.35 4.52 3.05 2.14 2.28 1.83 1.44 1.44 1.37 1.28 1.33 1.21 1.19 1.15 1.18 1.14 1.10 1.07 1.06 1.04

The average results still show the same learning patterns we expect and the individual games do

not seem to show any particularly unusual situations occurring. We could run some more tests,

but since we have inspected the productions the model learns fairly thoroughly and this small test

looks good we are going to assume that it is working well and move on to looking at the average

data.

Here are the results of the model without production compilation averaged over 50 runs:

Average Score of 50 trials

2.06 5.22 6.12 7.56 7.86 8.00 8.22 8.36 8.44 7.94 8.86 8.86 8.52 8.62 8.74 9.24 8.82 8.70 9.10 9.00

Average Response times

7.97 4.68 3.21 2.36 1.94 1.68 1.56 1.47 1.39 1.38 1.31 1.27 1.26 1.25 1.20 1.19 1.21 1.18 1.16 1.15

and here are the results of the model with production compilation averaged over 50 runs:

Average Score of 50 trials

2.88 5.78 6.76 7.52 7.90 7.76 8.10 8.16 8.88 8.00 8.40 8.78 8.42 8.72 8.98 9.02 8.82 8.44 8.46 8.88

Average Response times

7.73 4.63 2.96 2.31 1.78 1.60 1.51 1.39 1.35 1.27 1.20 1.20 1.17 1.14 1.11 1.10 1.09 1.08 1.08 1.06

The average scores look fairly similar between the two as do the response times, and about the

only difference seems to be that the model is slightly faster with production compilation. So,

unfortunately, setting up production compilation to work with that starting model has had little

effect on the results. The most likely reason for the response times not being much different is

because the initial model was already fairly compact in terms of the number of productions

which it needed to perform the task and its use of base-level learning quickly sped up the

retrievals necessary. Thus there was not a lot that compilation could remove to improve the

speed. As for the scores, the effect we wanted (compiling specific response productions for the

winning move on each potential trial) does not happen because as we saw above there are not

enough trials for those productions to learn a utility strong enough to dominate the initial

productions. Without any actual data to fit the model to there are no specific adjustments that

we need to make now to adjust the model's performance, but we will describe some adjustments

that could be made and you are welcome to investigate those changes or others to see what

effects they have on the model's results.

If we wanted the model to show a more gradual speedup in response time through production

compilation then we would have to make significant changes to the starting model so that it

required more productions and more retrievals to perform the task initially. One way to do that

would be to convert the model so that it has to retrieve task instructions like the unit 7 paired

associate task instead of starting out with an already optimized set of task specific productions.

Alternatively, we could change the declarative memory parameters that it uses so that it is not as

fast to begin with, but that could also be done without the need for production compilation. Just

changing the parameters for production compilation, like slowing the learning rate or adjusting

the initial utilities, would not allow us to make the model perform any slower than the starting

model because utility learning will favor the faster productions as long as they lead to the same

rewards which they will in this task as long as the model is responding correctly.

If we want the model to speed up even more through production compilation then we could

increase the utility learning rate so that the new productions get higher utilities sooner. We could

also increase the noise parameter or starting utilities so that they are more likely to be selected

and gain their own rewards sooner. That might help the model to use the productions we wanted

it to learn sooner. However a change like that might also make the scores go down because it

could allow composed productions which make bad responses to get selected more often as well

as the good ones. As an example, here are the results from running the model with an :alpha

value of .9 (a very fast learning rate):

Average Score of 50 trials

1.80 4.10 5.60 6.14 6.84 6.92 7.38 7.36 7.66 7.48 7.90 7.50 7.64 7.48 7.78 8.00 8.18 7.88 8.16 8.04

Average Response times

8.24 4.92 3.60 2.70 2.23 1.96 1.58 1.38 1.44 1.21 1.14 1.14 1.04 1.03 1.00 .95 .94 .89 .92 .85

The response times have gotten smaller, but the scores have dropped by about a point as well.

To see why that is happening you would have to look at the history of production usage and

utilities that are learned, which we will not do here.

That brings up the final issue that we will discuss. Adjusting the parameters for a model which

uses production compilation can be a more difficult process than for other models. That is

because of the potential for indirect effects to occur because of the automatic composition of new

productions. Thus, unlike other models where the parameters often map fairly directly onto

behavior, now one also has to consider what new productions can be learned and how the

parameters affect those as well. Those effects may not always be in the same direction as one

would expect (for example a faster learning rate leading to fewer correct responses). So, just like

the extra work that was required to test the model to make sure it operated correctly, adjusting

the parameters can also require looking at the new productions which are created and how their

utilities are changing as a result of parameter adjustments when trying to achieve a particular fit

to data or other explicit result from the model.

