
Debugging a Model Which Has Perceptual and Motor Actions

In this text we are going to implement a model which can perform a simple experiment which

requires visual and motor actions. While doing so we will encounter some problems which we

will walk through debugging. We will also discuss some of the additional things that one should

be careful about with respect to visual tasks in particular and also introduce some additional tools

in the ACT-R Environment which may be helpful in debugging and analyzing models.

The Task

The experiment which this model will have to perform involves the following steps:

- A letter is presented on the screen for between 1.5 and 2.5 seconds

- After the letter goes away either the word “next” or the word “previous” is displayed

- When the prompt is displayed the participant must type the letter which was

presented followed by the appropriate letter in the alphabet based on the prompt

The perceptual-motor-issues.lisp file in this unit includes the code to implement such an

experiment for the model as well as a starting model. To run the task you need to call the

simple-task function and you may provide either the string “next” or “previous” as a parameter

to pick which prompt to display, or if neither is given a random prompt will be chosen for the

trial. The return value from the function will be a list of the prompt and t or nil to indicate if the

model made the correct responses. Before running it however we will first discuss the design for

the model which we are attempting to write.

The Model Design

For most models, including this one, there are two important pieces to the model’s design. The

first is how to represent the knowledge necessary for the model to be able to perform the task,

and the other is the steps the model will perform to actually do the task. How the knowledge is

represented for the model will affect how the model has to perform the task, and knowing what

the model needs to do will affect what needs to be encoded in the knowledge representation. In

general, these two design issues are intertwined and one will typically need to work on both of

them together when starting the planning for the model. Below we will describe those two

pieces of the model we have started to write for this task along with some explanation as to why

we’ve made some of the choices we did. As we run the model and encounter problems we may

find that our initial design choices are not sufficient to perform the task and thus we will have to

adjust or design.

Knowledge representation

Because this model is performing a very simple task, we are not concerned with fitting human

performance data, and we are only using the symbolic level of ACT-R’s declarative memory we

can choose a representation which should make the modeling task easier. If we were concerned

about fitting human performance, we would have to consider the consequences of the

representation more thoroughly and would likely require something more involved than what we

will use here.

This model needs to know about letters of the alphabet and their ordering. We will represent that

in chunks in the model’s declarative memory. The first choice to make is how we will

distinguish letters, and we will use the simple assumption that each letter will be represented as a

separate chunk in a chunk-type called letter. Now we have to decide on what slots the letter type

needs and what information will be contained in those slots. Since this model will be reading a

letter from the screen and typing keys it will be important to have the letter’s visual

representation included in the chunk as well as a representation which can be used to type the

letter. Both the visual and motor representations use a Lisp string to represent a letter, so that is

what we need to have in the chunk, and will store it in a slot called name. The other thing which

the model needs to be able to determine is the next and previous letter of the alphabet given a

particular letter. There are many ways that one could represent that, but because we are writing a

simple symbolic model we will explicitly encode that information in the chunks for a given letter

in slots called next and previous. In fact, to make things even easier for the model we will

encode the next and previous information using the same perceptual/motor representation as we

do for the name of the letter (a Lisp string). Here is what the letter chunk-type and a chunk

representation for the letter B look like in the model:

(chunk-type letter name next previous)

(b isa letter name "b" next "c" previous "a")

A more plausible model would likely represent the next and previous values with a reference to

the other chunks instead of directly encoding the perceptual representations. In fact, it might

even only encode the next value instead of both next and previous if we believe that most people

only encode the alphabet in the forward direction. After we work through this example, as an

exercise, you may want to try changing the model’s representation to something like that and see

if you can then adjust the model’s actions appropriately so that it can still do the task.

We also need a way to represent the information needed to perform the task. Because this is a

very simple task, we are not going to use a goal chunk to hold state information and will instead

rely on the perceptual input and buffer contents to drive the state of the model. We will however

create a chunk to maintain the letter which we have read from the screen in the imaginal buffer.

Since that letter is the only information we need in that chunk the chunk-type only needs that one

slot and we can create a new type called task to use:

(chunk-type task letter)

Actions to perform

Now we will describe how we want our model to perform the task. As noted above we are not

going to use an explicit goal state to drive the model. Instead we will rely on the visual-location

buffer stuffing mechanism to have the model know when the screen changes and use the contents

of the buffers and states of the modules to determine what to do next. Here is the high-level

description of the steps which the model will perform:

- When it detects a letter on the screen attend it and record it in the imaginal buffer

- When it sees next or previous on the screen press the current key and retrieve the

appropriate letter chunk from declarative memory

- Once a chunk is retrieved press the appropriate key

There are other ways one could choose to perform this task, and as with the representation issues

noted above, after working through the debugging of this model you may want to consider other

ways of performing the task and try to model them.

To implement that sequence of actions we have written five productions. This is what each

production is intended to do:

find-letter – responds to the appearance of the letter due to buffer stuffing and then requests a

visual attention shift to the letter and create a new task chunk in the imaginal buffer

encode-letter – when the chunks resulting from the actions of find-letter are available in the

imaginal and visual buffers update the imaginal buffer with the letter that is seen

respond-next – when the model sees the word “next” on the screen press the current letter’s key

and make a retrieval request for the letter which occurs after the current one

respond-previous – when the model sees the word “previous” on the screen press the current

letter’s key and make a retrieval request for the letter which occurs before the current one

respond-final – when a letter chunk has been retrieved press the corresponding key

This is how we expect them to fire to do the task where the choice of whether it is respond-next

or respond-previous depends on the prompt displayed:

If you look over the productions you may see some potential problems in them or with the

overall design of the model, but please don’t get ahead of the exercise and just leave them alone

until we encounter the problems during the testing walkthrough below.

Load and Run the initial Model

There are no warnings when this model is loaded. So, there are no syntax errors or other

problems which we must fix before trying to run it. Now we will run the model to see how it

performs. To keep the testing consistent we will run it through trials for the “next” item until we

have that working and then move on to testing the “previous” trials. Also, for consistency, we

have set a seed parameter in the model. That way it will always be seeing the same letter and

perform the same way. Once we are satisfied with its performance with the seed fixed we will

remove that and test it under more variable conditions.

Here is the trace we get when we run the model:

> (simple-task "next")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 2.090 NONE DISPLAY-PROMPT next

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED NIL

 2.175 PROCEDURAL CONFLICT-RESOLUTION

 2.225 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 2.225 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 2.225 PROCEDURAL CLEAR-BUFFER VISUAL

 2.225 PROCEDURAL CLEAR-BUFFER IMAGINAL

 2.225 PROCEDURAL CONFLICT-RESOLUTION

 2.310 VISION Encoding-complete VISUAL-LOCATION2-0-0 NIL

 2.310 VISION SET-BUFFER-CHUNK VISUAL TEXT2

 2.310 PROCEDURAL CONFLICT-RESOLUTION

 2.425 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK1

 2.425 PROCEDURAL CONFLICT-RESOLUTION

 2.475 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 2.475 PROCEDURAL CLEAR-BUFFER VISUAL

 2.475 PROCEDURAL CONFLICT-RESOLUTION

 2.475 ------ Stopped because no events left to process

("next" NIL)

The model did not respond correctly to the task as indicated by the return value, and looking at

the trace we see that the productions did not fire in the sequence we expected. There are a

couple of things we could investigate, but we will start by determining where the model first

deviated from our plan and address that.

The first issue appears to be at time 2.225 when find-letter fires a second time. Here is the find-

letter production:

(p find-letter

 =visual-location>

 isa visual-location

 ?visual>

 state free

 ==>

 +visual>

 isa move-attention

 screen-pos =visual-location

 +imaginal>

 isa task

 letter nil

)

Before trying to fix the production we should make sure we understand why it fired again. If we

look at the conditions of the production all it requires to fire is that there is a chunk in the visual-

location buffer and that the vision module not be busy. Looking at the trace we see that at time

2.090 when the display of the “next” prompt occurs there is a new chunk placed into the visual-

location buffer. That happens because every time there is a change to the screen the visual-

location buffer will be stuffed with a chunk if it is empty. At time 2.175 we see that the vision

module completes the re-encoding of the display and thus at that point the module is free (we

could check that by using the stepper and inspecting the buffer status at that time, but for now we

will assume that’s the case). Those are the only two conditions for the find-letter production and

since they are satisfied it can be selected and fired again.

There are a few things we can do to correct that at this point: we could add additional tests to the

production so that it only fires when we want it to (the start of the task), we could change it or

other productions so that its conditions are not satisfied at time 2.175, or we could consider

redesigning the steps that we want the model to perform and rewrite this and other productions.

As a first step, we will take the first of those options and adjust this production to only fire when

we expect it to. After testing things further we may find that that is not sufficient and other

changes to our design and/or the model’s productions are necessary, but progressing in small

steps is often a good way to start.

Now we will consider what we can add to the production to make it only fire at the start. One

option would be to add a goal chunk to the model so that we could explicitly mark a start state,

but we would like to avoid doing that if possible because not having a goal chunk was part of our

design. Thus, we need to find something else which we can test. One place to look for

something like that is in the actions of the production itself – what does it do to change things

that can be tested to prevent it from firing again? A good candidate for that would be the

imaginal request since that is a change in the model which we expect to only occur once,

whereas the visual buffer is going to be used in multiple places and thus is not a change unique

to this production. This production is making a request to put a chunk into the imaginal buffer

and prior to that the buffer will be empty. If we test that the imaginal buffer is empty in the

conditions of find-letter that might be sufficient to prevent it from firing again later when we

don’t want it to. We could just make that change and run the model again to see if it’ll work, but

instead we will first run the model again and use the stepper to see if that change will help at

time 2.175 when the production is selected the second time. [Because this is such a small model

which runs quickly we don’t really need to perform that verification because we could determine

it from the trace or really just try it and see what happens, but in the interest of completeness we

will do so because in more complicated or larger models that may be a better choice.]

To perform the test we will open the stepper and then run the task again. Since we know what

time the production is selected, the conflict-resolution at time 2.175, we can use the run-until

button to advance the model to that time and then step forward to the conflict-resolution event.

Once we are there we can open a buffer viewer and look at the imaginal buffer. At that time we

see that it does indeed have a chunk in it:

IMAGINAL: TASK0-0

TASK0-0

 ISA TASK

 LETTER "n"

Therefore adding a test that the imaginal buffer is empty to find-letter should help. Here is the

new find-letter production with a query for the imaginal buffer being empty added:

(p find-letter

 =visual-location>

 isa visual-location

 ?visual>

 state free

 ?imaginal>

 buffer empty

 ==>

 +visual>

 isa move-attention

 screen-pos =visual-location

 +imaginal>

 isa task

 letter nil

)

We need to save that change and then reload the model.

Second version of the model

Here is the trace we get when we run the updated model:

> (SIMPLE-TASK "next")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 2.090 NONE DISPLAY-PROMPT next

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED NIL

 2.175 PROCEDURAL CONFLICT-RESOLUTION

 2.175 ------ Stopped because no events left to process

("next" NIL)

We don’t have a second firing of find-letter, but the model still doesn’t do the task correctly. We

are expecting the respond-next production to fire at this point, but it does not. Since the model is

stopped we can immediately use whynot to find out what the issue is. Here is what whynot

reports for respond-next:

> (whynot respond-next)

Production RESPOND-NEXT does NOT match.

(P RESPOND-NEXT

 =IMAGINAL>

 ISA TASK

 LETTER =LETTER

 =VISUAL>

 ISA TEXT

 VALUE "next"

 ?MANUAL>

 STATE BUSY

 ==>

 +RETRIEVAL>

 ISA LETTER

 PREVIOUS =LETTER

 +MANUAL>

 ISA PRESS-KEY

 KEY =LETTER

)

It fails because:

The STATE BUSY query of the MANUAL buffer failed.

Looking at the reason given and the production it should be fairly obvious that the issue is a

mistake in the production. We should be testing that the manual module’s state is free instead of

busy. If this were a more complicated model that may not be so obvious, and in that situation we

would likely want to investigate that further. To do so we would use the “Buffer Status viewer”

tool in the Environment or the buffer-status command to show us all of the current status

information for the given buffer/module and we may need to do so in conjunction with the

stepper to see how it changes as the model progresses. In this case we don’t need to do so, but

here is what it shows for the manual buffer for the sake of completeness:

MANUAL:

 buffer empty : T

 buffer full : NIL

 buffer requested : NIL

 buffer unrequested : NIL

 state free : T

 state busy : NIL

 state error : NIL

 preparation free : T

 preparation busy : NIL

 processor free : T

 processor busy : NIL

 execution free : T

 execution busy : NIL

 last-command : NONE

There we can see that the state busy query is NIL at this time whereas the state free query is T.

We need to change that test from busy to free in the production, save the model, and load it.

Model version 3

Here is the trace we get from running the model now:

> (SIMPLE-TASK "next")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 2.090 NONE DISPLAY-PROMPT next

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED NIL

 2.175 PROCEDURAL CONFLICT-RESOLUTION

 2.225 PROCEDURAL PRODUCTION-FIRED RESPOND-NEXT

 2.225 PROCEDURAL CLEAR-BUFFER IMAGINAL

 2.225 PROCEDURAL CLEAR-BUFFER VISUAL

 2.225 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.225 PROCEDURAL CLEAR-BUFFER MANUAL

 2.225 MOTOR PRESS-KEY n

 2.225 DECLARATIVE START-RETRIEVAL

 2.225 DECLARATIVE RETRIEVED-CHUNK O

 2.225 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL O

 2.225 PROCEDURAL CONFLICT-RESOLUTION

 2.275 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 2.275 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 2.275 PROCEDURAL CLEAR-BUFFER VISUAL

 2.275 PROCEDURAL CLEAR-BUFFER IMAGINAL

 2.275 PROCEDURAL CONFLICT-RESOLUTION

 2.325 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 2.325 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.325 PROCEDURAL CLEAR-BUFFER MANUAL

 2.325 MOTOR PRESS-KEY o

#|Warning: Module :MOTOR jammed at time 2.325 |#

 2.325 PROCEDURAL CONFLICT-RESOLUTION

 2.360 VISION Encoding-complete VISUAL-LOCATION2-0-0 NIL

 2.360 VISION SET-BUFFER-CHUNK VISUAL TEXT2

 2.360 PROCEDURAL CONFLICT-RESOLUTION

 2.475 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK1

 2.475 PROCEDURAL CONFLICT-RESOLUTION

 2.525 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 2.525 PROCEDURAL CLEAR-BUFFER VISUAL

 2.525 PROCEDURAL CONFLICT-RESOLUTION

 2.625 MOTOR OUTPUT-KEY #(6 5)

 2.625 PROCEDURAL CONFLICT-RESOLUTION

 2.775 PROCEDURAL CONFLICT-RESOLUTION

 2.775 ------ Stopped because no events left to process

("next" NIL)

The model still did not complete the task correctly, but it does appear to have fired the

productions we expected in order (we will ignore the extra productions fired at the end of the run

for now) and attempted to press the correct keys: n and o. However the warning that is printed at

time 2.325 seems to be a problem:

#|Warning: Module :MOTOR jammed at time 2.325 |#

A module gets “jammed” when there are multiple concurrent requests which it is unable to

process. That is usually not something which the model should do, thus eliminating the cause of

that warning seems like the next step to take. Looking at the trace, the respond-final production

is the last one to fire before the warning and since we know that that production is supposed to

press a key that makes it the likely candidate for having caused the problem. Before looking at

the production itself, we will first look at the state of the motor module at the time that

production fires. To do that we will open the stepper, start the task, and then pick production for

the run until option, enter respond-final, and then hit the “Run Until” button. The model will

then be stopped just before the production fires and we can open the “Buffer Status viewer” to

look at the motor module’s state as reported by the manual buffer:

MANUAL:

 buffer empty : T

 buffer full : NIL

 buffer requested : NIL

 buffer unrequested : NIL

 state free : NIL

 state busy : T

 state error : NIL

 preparation free : NIL

 preparation busy : T

 processor free : NIL

 processor busy : T

 execution free : T

 execution busy : NIL

 last-command : PRESS-KEY

There we see that the module is busy at that time and respond-final should not be making a

request to the manual buffer because it is not ready. Here is the text of our respond-final

production:

(p respond-final

 =retrieval>

 isa letter

 name =letter

 ==>

 +manual>

 isa press-key

 key =letter

)

It does not have a condition to make sure that the motor module is not busy, but because it is

making a manual buffer request it should have such a check to avoid the jamming which occurs.

Here is an updated version of that production which has a query of the state to avoid the

jamming:

(p respond-final

 =retrieval>

 isa letter

 name =letter

 ?manual>

 state free

 ==>

 +manual>

 isa press-key

 key =letter

)

We need to save that change and again reload the model.

Model version 4

Here is the trace of the model running after that change:

> (SIMPLE-TASK "next")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 2.090 NONE DISPLAY-PROMPT next

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED NIL

 2.175 PROCEDURAL CONFLICT-RESOLUTION

 2.225 PROCEDURAL PRODUCTION-FIRED RESPOND-NEXT

 2.225 PROCEDURAL CLEAR-BUFFER IMAGINAL

 2.225 PROCEDURAL CLEAR-BUFFER VISUAL

 2.225 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.225 PROCEDURAL CLEAR-BUFFER MANUAL

 2.225 MOTOR PRESS-KEY n

 2.225 DECLARATIVE START-RETRIEVAL

 2.225 DECLARATIVE RETRIEVED-CHUNK O

 2.225 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL O

 2.225 PROCEDURAL CONFLICT-RESOLUTION

 2.275 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 2.275 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 2.275 PROCEDURAL CLEAR-BUFFER VISUAL

 2.275 PROCEDURAL CLEAR-BUFFER IMAGINAL

 2.275 PROCEDURAL CONFLICT-RESOLUTION

 2.360 VISION Encoding-complete VISUAL-LOCATION2-0-0 NIL

 2.360 VISION SET-BUFFER-CHUNK VISUAL TEXT2

 2.360 PROCEDURAL CONFLICT-RESOLUTION

 2.475 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK1

 2.475 PROCEDURAL CONFLICT-RESOLUTION

 2.525 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 2.525 PROCEDURAL CLEAR-BUFFER VISUAL

 2.525 PROCEDURAL CONFLICT-RESOLUTION

 2.625 MOTOR OUTPUT-KEY #(6 5)

 2.625 PROCEDURAL CONFLICT-RESOLUTION

 2.775 PROCEDURAL CONFLICT-RESOLUTION

 2.825 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 2.825 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.825 PROCEDURAL CLEAR-BUFFER MANUAL

 2.825 MOTOR PRESS-KEY o

 2.825 PROCEDURAL CONFLICT-RESOLUTION

 2.975 PROCEDURAL CONFLICT-RESOLUTION

 3.025 PROCEDURAL CONFLICT-RESOLUTION

 3.125 MOTOR OUTPUT-KEY #(9 3)

 3.125 PROCEDURAL CONFLICT-RESOLUTION

 3.275 PROCEDURAL CONFLICT-RESOLUTION

 3.275 ------ Stopped because no events left to process

("next" T)

The return value indicates that the model performed the task correctly. However, if we look at

the trace thoroughly we see that there are still unexpected firings of the find-letter and encode-

letter productions. So, while the model has performed the task correctly, it still isn’t running the

way we expect it to. We will have to again look into why find-letter is firing unexpectedly.

Here is our current find-letter production which has the additional constraint that the imaginal

buffer is empty which we added previously to prevent it from firing when we didn’t want it to:

(p find-letter

 =visual-location>

 isa visual-location

 ?visual>

 state free

 ?imaginal>

 buffer empty

 ==>

 +visual>

 isa move-attention

 screen-pos =visual-location

 +imaginal>

 isa task

 letter nil

)

So the question is why is it now firing at time 2.275? We could use the stepper to slowly walk

the model up to that point and watch what happens with the buffer viewers, which you may find

to be a useful exercise for practice, but we can also look at the trace for clues. Looking at the

trace shows this event at time 2.225:

2.225 PROCEDURAL CLEAR-BUFFER IMAGINAL

which indicates that a production has cleared the imaginal buffer. As we saw the last time we

adjusted this production the screen change is resulting in the visual-location buffer being stuffed

with a chunk. Since there are no visual requests pending at that time that means that all of the

conditions in the production are again satisfied and it can be selected to fire.

The first question raised here is why does the imaginal buffer get cleared at time 2.225? Looking

at the trace, the respond-next production is the one which caused that action to occur because it’s

the production which fired at the same time as the buffer was cleared. Here is the text of that

production:

(p respond-next

 =imaginal>

 isa task

 letter =letter

 =visual>

 isa text

 value "next"

 ?manual>

 state free

 ==>

 +retrieval>

 isa letter

 previous =letter

 +manual>

 isa press-key

 key =letter

)

The reason why that causes the imaginal buffer to be cleared is the strict harvesting mechanism –

if a production tests a buffer on the LHS and does not modify the chunk in that buffer on the

RHS then it will automatically be cleared.

Now we have to decide how we are going to fix this in the model. There are a lot of options

available and we should consider the possibilities and their implications instead of just applying

the first option that comes to mind.

One possibility would be to abandon our design plan of not using a goal and embed explicit goal

states into all of the productions. That would definitely allow us to avoid these unexpected

production firings. The downside is that the model then becomes less flexible since it must

follow those states. In the task which we are modeling here that would not be a serious problem,

but in other tasks flexibility is necessary and for the purpose of this exercise we would like to

keep the model flexible as an example.

Another option would be to find another automatic state indicator, like the buffer being empty

which we used before, that we could add to find-letter to prevent it from firing now. Given the

overall design of our task however (which has very little in the way of state changes) and the fact

that we are already testing conditions on both of the buffers for which the find-letter production

performs actions (the state that it changes directly) this doesn’t seem like a good path to go

down. While we may be able to find some other implicit state test that we could perform to

block it from matching at time 2.225 that’s likely just going to push the problem off to yet

another time for which we will have to find another state test to add.

Instead of finding another state marker to test, we could modify other productions which fire so

that they don’t create the state which is problematic. In particular, if the imaginal buffer were

not cleared then the existing conditions in the find-letter production would prevent it from not

firing again. Based on the design of our model the imaginal buffer does not need to be cleared

and thus this seems like it might be a good option. In other models however clearing of the

buffer may be important because it might be necessary for learning (as we’ll see in unit 4) or we

may need to clear it to put a different chunk in there.

Something else to consider is that perhaps the overall design we’ve chosen for performing the

task itself needs to be modified. We may not have chosen a sequence of actions which the model

can perform to adequately complete this task. Often when building models one may want to

reevaluate the initial design. Some reasons for that would be because of unexpected situations

which are discovered that the design did not address, because one finds that there were

assumptions made in the design which weren’t apparent before trying to run it, or perhaps

because the design leads to a model which is unable to meet the desired performance objectives.

While there are almost always small adjustments that can be made to the model to try to get it

working “better”, if there are lots of adjustments being made it might be a sign that the design

itself needs to be evaluated.

In this case, we’re going to go with the easy option for now (not clearing the imaginal buffer),

but if we have any more problems we will look at our design before adjusting the model further.

There are multiple things we could do to keep the chunk in the imaginal buffer for this model

since we are not really constrained by other productions which use the buffer or the chunk that’s

created there. What seems like the easiest option here is to just change the respond-next

production so that it keeps the chunk in the buffer instead of allowing strict harvesting to clear it.

To do that, we need to perform a modification action on the RHS of respond-next. Now, there

isn’t a meaningful modification that we need to make, but that’s alright because a production is

allowed to make what’s called an empty modification for exactly this purpose. To do that one

just adds an = buffer action on the RHS without specifying any slots and values to modify. Here

is what the updated respond-next production looks like:

(p respond-next

 =imaginal>

 isa task

 letter =letter

 =visual>

 isa text

 value "next"

 ?manual>

 state free

 ==>

 =imaginal>

 +retrieval>

 isa letter

 previous =letter

 +manual>

 isa press-key

 key =letter

)

We should make a similar change to the respond-previous production while we are modifying

the model since we will likely encounter the same issue there.

If we didn’t want to make that change or if there were lots of productions or instances where this

was an issue in the model we could alternatively turn off the strict harvesting mechanism for the

imaginal buffer. That can be done using the :do-not-harvest parameter in the system. In this

simple mode that would not cause any issues, but for larger models one would have to consider

that carefully because it may affect other productions which also use the buffer and then require

the model to explicitly clear that buffer when needed instead.

Now we will save that change and again reload the model.

Model version 5

This is what the trace looks like now when we run it:

(SIMPLE-TASK "next")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 2.090 NONE DISPLAY-PROMPT next

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED NIL

 2.175 PROCEDURAL CONFLICT-RESOLUTION

 2.225 PROCEDURAL PRODUCTION-FIRED RESPOND-NEXT

 2.225 PROCEDURAL CLEAR-BUFFER VISUAL

 2.225 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.225 PROCEDURAL CLEAR-BUFFER MANUAL

 2.225 MOTOR PRESS-KEY n

 2.225 DECLARATIVE START-RETRIEVAL

 2.225 DECLARATIVE RETRIEVED-CHUNK O

 2.225 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL O

 2.225 PROCEDURAL CONFLICT-RESOLUTION

 2.475 PROCEDURAL CONFLICT-RESOLUTION

 2.525 PROCEDURAL CONFLICT-RESOLUTION

 2.625 MOTOR OUTPUT-KEY #(6 5)

 2.625 PROCEDURAL CONFLICT-RESOLUTION

 2.775 PROCEDURAL CONFLICT-RESOLUTION

 2.825 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 2.825 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.825 PROCEDURAL CLEAR-BUFFER MANUAL

 2.825 MOTOR PRESS-KEY o

 2.825 PROCEDURAL CONFLICT-RESOLUTION

 2.975 PROCEDURAL CONFLICT-RESOLUTION

 3.025 PROCEDURAL CONFLICT-RESOLUTION

 3.125 MOTOR OUTPUT-KEY #(9 3)

 3.125 PROCEDURAL CONFLICT-RESOLUTION

 3.275 PROCEDURAL CONFLICT-RESOLUTION

 3.275 ------ Stopped because no events left to process

("next" T)

Here we see that the model has performed the task correctly and that it performed the steps

which we expected. Before moving on and trying the “previous” trials however we may want to

perform some more tests so that we are confident that it works well for the “next” items. In

particular, this model has the :seed parameter set to keep things consistent while debugging. We

should try removing that from the model and running it a couple of times so that we can see if it

is able to perform the task for letters other than “N” and when the prompt is displayed at times

other than 2.090. Instead of actually removing that line from the model however it is probably

best to just “comment it out” so that we can easily restore it for testing if things go wrong and for

testing the previous trials. In Lisp, the semi-colon character is used to create comments and

everything on a line after the semi-colon will be ignored. Thus, we should put a semi-colon at

the start of the line where the seed is set:

; (sgp :seed (101 1))

In addition, we may also want to turn the trace-detail down to low since we expect to just be

checking a correctly function model at this point and don’t need all the extra details. After

making those changes, save the model and reload it. Running it a few times seems to indicate

that it is still able to perform the task correctly and as expected with varying letters and different

prompting times. So, now we should test trials with the previous letter.

Testing “previous” trial

Before starting to test the “previous” trials it is probably best to uncomment the :seed parameter

setting by removing the semi-colon and set the trace-detail level back to medium. After making

those changes, saving and then loading the model here is what we get for the trial with previous:

> (simple-task "previous")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 2.090 NONE DISPLAY-PROMPT previous

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION No visual-object found

 2.175 PROCEDURAL CONFLICT-RESOLUTION

 2.175 ------ Stopped because no events left to process

("previous" NIL)

The model failed to do the task so now we need to investigate why. The next production which

we expect to fire is respond-previous and we can request the whynot information about it now

since the model has stopped when we expect it to be selected and fire:

Production RESPOND-PREVIOUS does NOT match.

(P RESPOND-PREVIOUS

 =IMAGINAL>

 ISA TASK

 LETTER =LETTER

 =VISUAL>

 ISA TEXT

 VALUE "previous"

 ?MANUAL>

 STATE FREE

 ==>

 =IMAGINAL>

 +RETRIEVAL>

 ISA LETTER

 NEXT =LETTER

 +MANUAL>

 ISA PRESS-KEY

 KEY =LETTER

)

It fails because:

The VISUAL buffer is empty.

It’s failing to match because the visual buffer is empty. So, now the question becomes why is

the visual buffer empty since it worked for the prompt “next”? Before looking at the model trace

we might want to make sure that there isn’t a bug in the Lisp code which presented the

experiment to the model. To do that we can look at the experiment window which was presented

and make sure it has the word previous displayed in it, which it does. Then the next thing to

check would be the model’s visicon to make sure that it has properly updated with the current

information. That can be done using the print-visicon command or with the “Visicon” button in

the Environment. Here is what that displays:

Loc Att Kind Value Color ID

--------- --- ------------- ---------------- -------------- -------------

(154 160) NEW TEXT "previous" BLACK VISUAL-LOCATION2

So, indeed the vision module has processed that the word previous is visible on the screen and

thus the experiment code appears to be working correctly and the problem must be with the

model. Doing a simple check like that before proceeding can be very helpful to make sure you

know what is happening before trying to fix a problem in the model which might not even exist.

One more thing that we’ll do before trying to change the model is compare what happens in the

vision module after the prompt appears on a “next” trial compared to a “previous” trial. Here is

the trace for the correct “next” trial:

 2.090 NONE DISPLAY-PROMPT next

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED

and here is the trace from the same segment of the “previous” trial:

 2.090 NONE DISPLAY-PROMPT previous

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION No visual-object found

In the “next” trial we see a chunk placed into the visual buffer, but in the “previous” trial the

module reports that there is no visual-object found. The first question to ask would seem to be

why is there any visual activity at all, since there isn’t a request made by a production? The

answer to that is that in addition to stuffing a chunk in the visual-location buffer when there is a

change to the visual scene the vision module will automatically re-encode the location where it is

currently attending. So, that is what causes the encoding which completes at time 2.175. That

hadn’t actually been taken into account in our original design, but by chance we got lucky with

the “next” prompt. Before deciding what to do about it we should first figure out why it works

for “next” and see how that differs from “previous”. To investigate that we should look at the

visicon for the three different items which get displayed: the letter, “next”, and “previous”. To

do that we’ll use the stepper to pause the model at the start of the task to see the letter

information and then advance to the time when the screen changes to see what things look like

there.

Here are the visicon entries for those items:

Loc Att Kind Value Color ID

--------- --- ------------- ---------------- -------------- -------------

(135 160) NEW TEXT "n" BLACK VISUAL-LOCATION0

Loc Att Kind Value Color ID

--------- --- ------------- ---------------- -------------- -------------

(140 160) NEW TEXT "next" BLACK VISUAL-LOCATION2

Loc Att Kind Value Color ID

--------- --- ------------- ---------------- -------------- -------------

(154 160) NEW TEXT "previous" BLACK VISUAL-LOCATION2

NIL

In addition to what the model sees, we can also look at the commands from the Lisp code which

generate those displays. Here is the function call that puts the letter on the display:

(add-text-to-exp-window :text letter :x 130 :y 150)

and here is the one used to display both prompts:

 (add-text-to-exp-window :text prompt :x 125 :y 150)

Notice how each visicon entry is at a different location and those locations do not exactly match

where the text was displayed. That’s because the locations in the visicon are determined by the

center of the item (which is meaningful to the model), but the display functions use the upper left

corner for creating the display (the default GUI layout mechanism in various Lisps). That still

doesn’t directly answer why “next” gets attended but “previous” does not. The missing piece to

the puzzle is what it means for the model to re-encode the currently attended location. The re-

encoding action which the vision module automatically performs when there is a scene change

allows for some movement of items in the visual scene. As long as there is some object “close”

to where it is attending that new object will be attended automatically. What it means to be close

is controlled by a parameter in the vision module. We won’t discuss the details here, but they

can be found in the reference manual. The important thing for our current purposes is to notice

that “next” is closer to the letter than “previous” is and thus apparently “next” is close enough to

be re-encoded but “previous” is not.

After working through that, now the question becomes what do we do about it? Looking back at

the design of our model, we see that we hadn’t actually built in a way for the model to attend to

the prompt. That’s a flaw in the design of the model which we should address so that it can

perform the task.

Before doing so however, we will consider some other possible fixes for the model. Since it

works correctly for “next” we could modify the code that presents the experiment so that it also

displays “previous” close enough to the letter that it gets attended automatically. Alternatively,

we could adjust the parameter that controls how close something needs to be to be automatically

re-attended so that both prompts work. Either of those should be sufficient to have the model

complete the task, but are they good things to do? If one believes that that aspect of the task is

not relevant to the data being collected then perhaps one could consider those to be reasonable

changes, but it does then mean that there is an assumption in the design of the model – it can

only perform the task if the prompts are displayed in the “same” location as the letter (where

same means within the re-encoding range of the vision module). If one is trying to build a model

which can perform the more general task which we have described here (there is no constraint on

where the prompts are displayed in the task description) then such a model is not sufficient to do

that task. In general, engineering the experiment or support code so that the model performs

“better” or just adjusting parameters without a good reason is not a good approach to modeling.

The model should be robust enough that it can perform the task regardless of particular details in

the code with which it is interacting and it should not be dependent on assumptions which are not

true of the task it is supposed to be performing. Similarly, it is generally better to have a model

which works well with the default parameters for aspects of the model which are not relevant to

the task than it is to have a model which only works well because of specific parameter settings

which are changing things that aren’t directly relevant to the current task. Thus, we will not

attempt either of those fixes for this model.

Reconsidering the model design

Now we will consider how we need to change the design for the model. Here is the design

which we had originally planned:

- When it detects a letter on the screen attend it and then store it in the imaginal buffer

- When it sees next or previous press the current key and retrieve the appropriate letter

chunk from declarative memory

- Once a chunk is retrieved press that key

There are many ways to go about changing that design, but since it was almost working we will

first consider the simple addition of the step which we seem to be missing. Thus, we will add an

additional step to explicitly attend to the prompt when we see the screen change:

- When it detects a letter on the screen attend it and then store it in the imaginal buffer

- When it detects the screen change attend to the location of the new item

- When it sees next or previous press the current key and retrieve the appropriate letter

chunk from declarative memory

- Once a chunk is retrieved press that key

That change seems to be sufficient to address the problem we had and does not require changing

any of the other assumptions we have in the design. Thus, we should be able to keep the model

we have and just add productions as necessary to implement that new step. Other changes to the

design would likely require more changes to the model or adjustments of our design assumptions

so we will not look at those for now.

Adding the new step

To implement the new step we need another production which should look a lot like the first

production needed for the first step, except that it will not need to initialize the imaginal buffer.

We will call that production find-prompt and here is what it looks like:

(p find-prompt

 =visual-location>

 isa visual-location

 ?visual>

 state free

 ?imaginal>

 buffer full

 ==>

 +visual>

 isa move-attention

 screen-pos =visual-location

)

Because buffer stuffing will put a chunk into the visual-location buffer automatically we test that

on the LHS – that is how we detect that the prompt has been displayed. Then because we will be

making a request to the visual buffer we test that it is free so we do not jam the buffer, and then

we test that the imaginal buffer has a chunk in it. That test is to differentiate it from the find-

letter production which tests that the buffer is empty because when the prompt is displayed we

will already have a chunk in the imaginal buffer from encoding the letter. The only action this

production needs to perform is to attend to the location which was stuffed into the visual-location

buffer.

We need to save that change to the model and load it again.

Model version 6

Here is the trace for running the updated model on a trial with “previous”:

> (simple-task "previous")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 2.090 NONE DISPLAY-PROMPT previous

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION No visual-object found

 2.175 PROCEDURAL CONFLICT-RESOLUTION

 2.225 PROCEDURAL PRODUCTION-FIRED FIND-PROMPT

 2.225 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 2.225 PROCEDURAL CLEAR-BUFFER VISUAL

 2.225 PROCEDURAL CONFLICT-RESOLUTION

 2.310 VISION Encoding-complete VISUAL-LOCATION2-0-0 NIL

 2.310 VISION SET-BUFFER-CHUNK VISUAL TEXT1

 2.310 PROCEDURAL CONFLICT-RESOLUTION

 2.360 PROCEDURAL PRODUCTION-FIRED RESPOND-PREVIOUS

 2.360 PROCEDURAL CLEAR-BUFFER VISUAL

 2.360 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.360 PROCEDURAL CLEAR-BUFFER MANUAL

 2.360 MOTOR PRESS-KEY n

 2.360 DECLARATIVE START-RETRIEVAL

 2.360 DECLARATIVE RETRIEVED-CHUNK M

 2.360 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL M

 2.360 PROCEDURAL CONFLICT-RESOLUTION

 2.610 PROCEDURAL CONFLICT-RESOLUTION

 2.660 PROCEDURAL CONFLICT-RESOLUTION

 2.760 MOTOR OUTPUT-KEY #(6 5)

 2.760 PROCEDURAL CONFLICT-RESOLUTION

 2.910 PROCEDURAL CONFLICT-RESOLUTION

 2.960 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 2.960 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.960 PROCEDURAL CLEAR-BUFFER MANUAL

 2.960 MOTOR PRESS-KEY m

 2.960 PROCEDURAL CONFLICT-RESOLUTION

 3.010 PROCEDURAL CONFLICT-RESOLUTION

 3.060 PROCEDURAL CONFLICT-RESOLUTION

 3.160 MOTOR OUTPUT-KEY #(7 5)

 3.160 PROCEDURAL CONFLICT-RESOLUTION

 3.310 PROCEDURAL CONFLICT-RESOLUTION

 3.310 ------ Stopped because no events left to process

("previous" T)

The model successfully completed the task for “previous” and performed the steps which we

expected it to. Now we should test it on a trial for “next” to make sure that it can still do those

trials as well:

> (simple-task "next")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 2.090 NONE DISPLAY-PROMPT next

 2.090 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.090 PROCEDURAL CONFLICT-RESOLUTION

 2.175 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.175 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED NIL

 2.175 PROCEDURAL CONFLICT-RESOLUTION

 2.225 PROCEDURAL PRODUCTION-FIRED FIND-PROMPT

 2.225 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 2.225 PROCEDURAL CLEAR-BUFFER VISUAL

 2.225 PROCEDURAL CONFLICT-RESOLUTION

 2.310 VISION Encoding-complete VISUAL-LOCATION2-0-0 NIL

 2.310 VISION SET-BUFFER-CHUNK VISUAL TEXT2

 2.310 PROCEDURAL CONFLICT-RESOLUTION

 2.360 PROCEDURAL PRODUCTION-FIRED RESPOND-NEXT

 2.360 PROCEDURAL CLEAR-BUFFER VISUAL

 2.360 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.360 PROCEDURAL CLEAR-BUFFER MANUAL

 2.360 MOTOR PRESS-KEY n

 2.360 DECLARATIVE START-RETRIEVAL

 2.360 DECLARATIVE RETRIEVED-CHUNK O

 2.360 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL O

 2.360 PROCEDURAL CONFLICT-RESOLUTION

 2.610 PROCEDURAL CONFLICT-RESOLUTION

 2.660 PROCEDURAL CONFLICT-RESOLUTION

 2.760 MOTOR OUTPUT-KEY #(6 5)

 2.760 PROCEDURAL CONFLICT-RESOLUTION

 2.910 PROCEDURAL CONFLICT-RESOLUTION

 2.960 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 2.960 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.960 PROCEDURAL CLEAR-BUFFER MANUAL

 2.960 MOTOR PRESS-KEY o

 2.960 PROCEDURAL CONFLICT-RESOLUTION

 3.110 PROCEDURAL CONFLICT-RESOLUTION

 3.160 PROCEDURAL CONFLICT-RESOLUTION

 3.260 MOTOR OUTPUT-KEY #(9 3)

 3.260 PROCEDURAL CONFLICT-RESOLUTION

 3.410 PROCEDURAL CONFLICT-RESOLUTION

 3.410 ------ Stopped because no events left to process

("next" T)

Here again it did the task correctly and fired the productions which we expected. At this point

one might consider the model done, but we should remove the seed parameter setting (or

comment it out) and perform some more tests to make sure that the model doesn’t have a

dependence on that particular parameter setting.

Further tests of the working model

For the trials with “previous” everything still seems to work after running a few trials, but for

next occasionally we get a trial where it does not complete the task correctly and looks

something like this:

> (SIMPLE-TASK "next")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 1.714 NONE DISPLAY-PROMPT next

 1.714 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 1.714 PROCEDURAL CONFLICT-RESOLUTION

 1.799 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 1.799 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED NIL

 1.799 PROCEDURAL CONFLICT-RESOLUTION

 1.849 PROCEDURAL PRODUCTION-FIRED RESPOND-NEXT

 1.849 PROCEDURAL CLEAR-BUFFER VISUAL

 1.849 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 1.849 PROCEDURAL CLEAR-BUFFER MANUAL

 1.849 MOTOR PRESS-KEY h

 1.849 DECLARATIVE START-RETRIEVAL

 1.849 DECLARATIVE RETRIEVED-CHUNK I

 1.849 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL I

 1.849 PROCEDURAL CONFLICT-RESOLUTION

 1.899 PROCEDURAL PRODUCTION-FIRED FIND-PROMPT

 1.899 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 1.899 PROCEDURAL CLEAR-BUFFER VISUAL

 1.899 PROCEDURAL CONFLICT-RESOLUTION

 1.984 VISION Encoding-complete VISUAL-LOCATION2-0-0 NIL

 1.984 VISION SET-BUFFER-CHUNK VISUAL TEXT2

 1.984 PROCEDURAL CONFLICT-RESOLUTION

 2.099 PROCEDURAL CONFLICT-RESOLUTION

 2.149 PROCEDURAL CONFLICT-RESOLUTION

 2.249 MOTOR OUTPUT-KEY #(6 4)

 2.249 PROCEDURAL CONFLICT-RESOLUTION

 2.399 PROCEDURAL CONFLICT-RESOLUTION

 2.449 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 2.449 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.449 PROCEDURAL CLEAR-BUFFER MANUAL

 2.449 MOTOR PRESS-KEY i

 2.449 PROCEDURAL CONFLICT-RESOLUTION

 2.599 PROCEDURAL CONFLICT-RESOLUTION

 2.649 PROCEDURAL CONFLICT-RESOLUTION

 2.749 MOTOR OUTPUT-KEY #(8 3)

 2.749 PROCEDURAL CONFLICT-RESOLUTION

 2.899 PROCEDURAL CONFLICT-RESOLUTION

 2.949 PROCEDURAL PRODUCTION-FIRED RESPOND-NEXT

 2.949 PROCEDURAL CLEAR-BUFFER VISUAL

 2.949 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.949 PROCEDURAL CLEAR-BUFFER MANUAL

 2.949 MOTOR PRESS-KEY h

 2.949 DECLARATIVE START-RETRIEVAL

 2.949 DECLARATIVE RETRIEVED-CHUNK I

 2.949 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL I

 2.949 PROCEDURAL CONFLICT-RESOLUTION

 3.099 PROCEDURAL CONFLICT-RESOLUTION

 3.149 PROCEDURAL CONFLICT-RESOLUTION

 3.249 MOTOR OUTPUT-KEY #(6 4)

 3.249 PROCEDURAL CONFLICT-RESOLUTION

 3.399 PROCEDURAL CONFLICT-RESOLUTION

 3.449 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 3.449 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 3.449 PROCEDURAL CLEAR-BUFFER MANUAL

 3.449 MOTOR PRESS-KEY i

 3.449 PROCEDURAL CONFLICT-RESOLUTION

 3.599 PROCEDURAL CONFLICT-RESOLUTION

 3.649 PROCEDURAL CONFLICT-RESOLUTION

 3.749 MOTOR OUTPUT-KEY #(8 3)

 3.749 PROCEDURAL CONFLICT-RESOLUTION

 3.899 PROCEDURAL CONFLICT-RESOLUTION

 3.899 ------ Stopped because no events left to process

("next" NIL)

Looking at the trace we see that the respond-next production fired when we expected our find-

prompt production to fire, and then find-prompt fired after that which caused respond-next to fire

again. That caused the model to press the key for the displayed letter twice before hitting the key

for the next letter and thus failing the task.

While it may be possible with this simple model to determine why this occurred from the trace

and looking at the productions, in other cases one may need to investigate that further with the

stepper and the inspection tools. Because it only happens on some of the trials that can become a

difficult task since one may have to go through things several times before seeing the problem

again. Before discussing ways to fix this model we will cover a couple of things that can be

done to help with investigating randomly occurring problems like this.

Techniques for working with randomly occurring problems

The first thing that one can do is have additional information displayed in the trace. That might

be enough to help fix things without having to use the stepper and other tools because then one

can just run the model until a problem trial occurs and inspect the additional information in the

trace. Some modules provide extra trace information which can be turned on to show more

details about what they are doing. In this case, we could take advantage of two traces which the

procedural module provides. They are called the “conflict set trace” and the “conflict resolution

trace” and can be enabled by setting the :cst and :crt parameters respectively in the model. If

those parameters are set to t then details about which productions match are shown in the trace

for each conflict resolution action. We will not describe those traces further here, but you can try

them out with this model to see the type of information they provide.

Another thing that can be done is to use the seed parameter to force the model to repeat a

particular sequence of actions. We’ve seen that used often in the tutorial to provide consistent

examples, but the problem is how do you find a seed for a “bad” trial so that you can replay it for

further inspection? One approach is to just run the model repeatedly letting it pick its own seed

(if the model definition does not specify a seed a new one will be generated each time it is reset)

and have it display that initial seed at the start of the task. Then, when you find a trial that

doesn’t work correctly you can take the seed value that was displayed and set it in the model so

that you can repeat that broken trial to inspect it further. The easy way to do that is to just add a

call to sgp specifying the :seed parameter as the first command in the model definition like this:

(sgp :seed)

If a value isn’t provided for a parameter to the sgp command it prints out the current value of that

parameter along with the default value and some documentation. Thus, if we add that to the top

of our current model and turn the trace off so that things run faster we should be able to quickly

find a seed value which will allow us to repeat a broken trial for further inspection. For example,

here is a sample of what that might look like for the current task (your seed values are likely to

differ from those shown below since the starting seed is pseudo-randomly determined if one is

not provided):

> (SIMPLE-TASK "next")

:SEED (74053450058 261) (default NO-DEFAULT) : Current seed of the random number generator

("next" T)

> (SIMPLE-TASK "next")

:SEED (74053450058 297) (default NO-DEFAULT) : Current seed of the random number generator

("next" T)

> (SIMPLE-TASK "next")

:SEED (74053450058 333) (default NO-DEFAULT) : Current seed of the random number generator

("next" NIL)

In this case we found that a seed of (74053450058 333) leads to the model failing the task. Now

we can set that seed in the model definition like this:

(sgp :seed (74053450058 333))

and the model will always perform that same bad trial which we can then investigate further.

Using the seed parameter like that can be very convenient, not only for debugging but for

demonstration purposes to find a situation that one wants to repeat (as is done for the tutorial

models). However, there is one requirement of the model and experiment code to be able to use

it that way. It will only work if all of the randomness in both the model and the experiment

depends on the ACT-R provided randomness functions. If the task or model uses some other

source of random numbers (for instance the Lisp random function) then setting the ACT-R seed

parameter will not guarantee the same sequence of actions occur and one will also have to

control that other random source as well to guarantee a repeatable trial. All of the tasks in the

tutorial satisfy the constraint of only using the ACT-R randomness functions.

The broken “next” trial

Now that we have a way to recreate a non-working trial we can investigate it further. The first

thing we want to do is turn the trace back on and run it to look at what happens. Here is the trace

we get:

> (simple-task "next")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 2.151 NONE DISPLAY-PROMPT next

 2.151 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.151 PROCEDURAL CONFLICT-RESOLUTION

 2.236 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 2.236 VISION SET-BUFFER-CHUNK VISUAL TEXT1 REQUESTED NIL

 2.236 PROCEDURAL CONFLICT-RESOLUTION

 2.286 PROCEDURAL PRODUCTION-FIRED RESPOND-NEXT

 2.286 PROCEDURAL CLEAR-BUFFER VISUAL

 2.286 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.286 PROCEDURAL CLEAR-BUFFER MANUAL

 2.286 MOTOR PRESS-KEY m

 2.286 DECLARATIVE START-RETRIEVAL

 2.286 DECLARATIVE RETRIEVED-CHUNK N

 2.286 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL N

 2.286 PROCEDURAL CONFLICT-RESOLUTION

 2.336 PROCEDURAL PRODUCTION-FIRED FIND-PROMPT

 2.336 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 2.336 PROCEDURAL CLEAR-BUFFER VISUAL

 2.336 PROCEDURAL CONFLICT-RESOLUTION

 2.421 VISION Encoding-complete VISUAL-LOCATION2-0-0 NIL

 2.421 VISION SET-BUFFER-CHUNK VISUAL TEXT2

 2.421 PROCEDURAL CONFLICT-RESOLUTION

 2.536 PROCEDURAL CONFLICT-RESOLUTION

 2.586 PROCEDURAL CONFLICT-RESOLUTION

 2.686 MOTOR OUTPUT-KEY #(7 5)

 2.686 PROCEDURAL CONFLICT-RESOLUTION

 2.836 PROCEDURAL CONFLICT-RESOLUTION

 2.886 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 2.886 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.886 PROCEDURAL CLEAR-BUFFER MANUAL

 2.886 MOTOR PRESS-KEY n

 2.886 PROCEDURAL CONFLICT-RESOLUTION

 2.936 PROCEDURAL CONFLICT-RESOLUTION

 2.986 PROCEDURAL CONFLICT-RESOLUTION

 3.086 MOTOR OUTPUT-KEY #(6 5)

 3.086 PROCEDURAL CONFLICT-RESOLUTION

 3.236 PROCEDURAL CONFLICT-RESOLUTION

 3.286 PROCEDURAL PRODUCTION-FIRED RESPOND-NEXT

 3.286 PROCEDURAL CLEAR-BUFFER VISUAL

 3.286 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 3.286 PROCEDURAL CLEAR-BUFFER MANUAL

 3.286 MOTOR PRESS-KEY m

 3.286 DECLARATIVE START-RETRIEVAL

 3.286 DECLARATIVE RETRIEVED-CHUNK N

 3.286 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL N

 3.286 PROCEDURAL CONFLICT-RESOLUTION

 3.336 PROCEDURAL CONFLICT-RESOLUTION

 3.386 PROCEDURAL CONFLICT-RESOLUTION

 3.486 MOTOR OUTPUT-KEY #(7 5)

 3.486 PROCEDURAL CONFLICT-RESOLUTION

 3.636 PROCEDURAL CONFLICT-RESOLUTION

 3.686 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 3.686 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 3.686 PROCEDURAL CLEAR-BUFFER MANUAL

 3.686 MOTOR PRESS-KEY n

 3.686 PROCEDURAL CONFLICT-RESOLUTION

 3.736 PROCEDURAL CONFLICT-RESOLUTION

 3.786 PROCEDURAL CONFLICT-RESOLUTION

 3.886 MOTOR OUTPUT-KEY #(6 5)

 3.886 PROCEDURAL CONFLICT-RESOLUTION

 4.036 PROCEDURAL CONFLICT-RESOLUTION

 4.036 ------ Stopped because no events left to process

("next" NIL)

The first problem in the trace shows up at time 2.286 when respond-next fires and we expect

find-prompt to fire. However, stepping to that point will be too late because the real issue we

want to investigate is during the conflict resolution action which results in respond-next being

selected – we want to see why find-prompt isn’t selected at that time. To see the production

selection event in the trace (and thus be able to step to it) we will have to set the trace-detail

parameter to high. If we make that change, save and then load the model we can now step to the

point where the problem occurs, which is time 2.236, when the conflict resolution action selects

respond-next instead of find-prompt.

Stepping to that production selection event we see that in fact both respond-next and find-prompt

match at that point in time. So, now the question is why is one chosen over the other? The

answer to that has to do with how the procedural module selects among productions when more

than one matches. The first determination is by utility values; the production with the higher

utility value will be the one chosen. In this case both productions have the same utility which is

the default of 0 since we have not changed them. When productions have the same utility how

the procedural module decides is determined by the setting of the :er (enable randomness)

parameter. If the parameter is set to nil (which is the default value) then the module will use an

unspecified but deterministic mechanism to choose one of the two productions. That will result

in a specific model always having the same production chosen when that same tie situation

occurs, but it does not guarantee that same choice will be made for any other model or even for

that same model if it is changed in any way. While that is deterministic and can be useful when

starting to work on a model it is not generally a good thing to rely on for a robust model. Instead

the recommendation is to set the :er parameter to t which means that whenever there is a tie for

the top utility value the model will randomly pick which production to fire (of course as was

discussed above even the random processes of the model can be made deterministic by setting

the seed parameter). In this model the :er parameter is set to t, thus that is why sometimes it

works and sometimes it does not.

Options for how to fix the problem

Now that we know what’s wrong with the model we need to make sure that find-prompt always

fires instead of respond-next in that situation. There are a few options available, including yet

another redesign of our task. We will look at some of the options available before making a

choice or determining whether or not to amend the design again.

The first thing we could do is turn off the :er parameter and see which one it favors. If find-

prompt is the winner then that would solve the problem. However, that’s not really a good

choice since it would only work because of an arbitrary mechanism in the procedural module

which we cannot control and if we make any other changes to the model it may stop working.

As was done in the sperling model for the unit 3 example we could set explicit utilities on the

productions involved. That way we could guarantee that find-prompt was always chosen over

respond-next. This would be better than the previous option since we would be in control of how

the choice was made. In this situation that seems like a reasonable solution, but when we get to

later units and are working with models that are able to learn utilities we will find that setting

fixed initial values to control the operation of the model may not work as well.

We could try to find some state that differs at that time which would allow us to add additional

conditions to one or both of those productions to prevent them from both matching at that point.

Both productions already have tests using the imaginal and visual buffers, so those are not likely

to provide any differentiation. However, read-prompt requires a chunk in the visual-location

buffer and respond-next does not. So, we could make that explicit by adding a test that the

visual-location buffer was empty to respond-next and that should prevent them from both

matching at the same time. If we choose to do that we would also want to make that same

change to respond-previous to be consistent.

The next alternative is to adjust the earlier productions in the model so that it has a different state

than it does now at that critical time when the screen changes so that both productions no longer

match. Here there seem to be a variety of options available. One would be to add a goal buffer

chunk with an explicit state which could be tested, but we’ve been trying to avoid that as part of

the design for the model. Instead of using the goal buffer, since we already have a chunk in the

imaginal buffer, we could add some explicit state marker to that chunk or perhaps set the

contents of that chunk’s existing slot in such a way as to implicitly indicate the state. That

however seems to still go against the design we have for the model and also goes against the

distinction between the goal and imaginal buffers in ACT-R i.e. that goal should be used for state

information and imaginal for problem representation. Another option would be to change the

state by changing the actions which the model performs. In particular, we can stop the automatic

re-encoding from happening by having the model stop attending to the location of the letter once

it has encoded it. That would prevent respond-next and respond-previous from being able to

match until after find-prompt fires because there wouldn’t be a chunk in the visual buffer. In fact

if we had done that earlier it may have avoided some of the other problems we encountered.

Now we have three options which seem reasonable: set explicit utilities for the productions, add

an additional condition to the respond productions, or have the model stop attending the letter.

So, how do we decide which one to use? The important thing to consider in making that

decision is why are we creating the model? If we had data for this task that we were trying to fit

then that might help us to make the decision based on how the model’s response times might

differ among the options. Something else to consider would be cognitive plausibility – are we

trying to create a model which we think performs the task like a person? If so, then we would

want to consider which of the options seems to best correspond to what we think a person does

while performing the task. If one has other objectives for building the model, then comparing

the options with respect to those objectives would be the thing to do. Essentially, there is not a

single “right” model for a task. What is important is that the model one builds satisfies the

purposes for which it was written, and that usually involves understanding the details about how

the model works and being able to justify the choices made.

Since the objective of this model is demonstrating debugging and modeling techniques related to

perceptual and motor module issues, any of those options seems like a justifiable choice. The

last one of the three however seems like it would be the best since it uses another perceptual

action which may provide additional areas to investigate.

Adding the new action

To make the model stop attending we need to make an explicit request to the vision module.

That request must be “isa clear”. In this task the model does not need to keep attending the letter

after it has harvested the information from the visual buffer and that happens in the encode-letter

production. Thus, that is where we want to make the request to stop attending. In addition to

making the request we should also add a test to the LHS of the production to make sure the

module is free to avoid the possibility of jamming with the request. Here is the updated

production with those changes:

(p encode-letter

 =imaginal>

 isa task

 letter nil

 =visual>

 isa text

 value =letter

 ?visual>

 state free

 ==>

 +visual>

 isa clear

 =imaginal>

 letter =letter

)

With that change and the trace-detail set back to medium here is the trace we get when running it

with the seed we had set for the incorrect trial:

> (simple-task "next")

 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

 0.000 PROCEDURAL CONFLICT-RESOLUTION

 0.050 PROCEDURAL PRODUCTION-FIRED FIND-LETTER

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 0.050 PROCEDURAL CLEAR-BUFFER VISUAL

 0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 0.050 PROCEDURAL CONFLICT-RESOLUTION

 0.135 VISION Encoding-complete VISUAL-LOCATION0-0-0 NIL

 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

 0.135 PROCEDURAL CONFLICT-RESOLUTION

 0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL TASK0

 0.250 PROCEDURAL CONFLICT-RESOLUTION

 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER

 0.300 PROCEDURAL CLEAR-BUFFER VISUAL

 0.300 VISION CLEAR

 0.300 PROCEDURAL CONFLICT-RESOLUTION

 0.350 PROCEDURAL CONFLICT-RESOLUTION

 2.151 NONE DISPLAY-PROMPT next

 2.151 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0 REQUESTED NIL

 2.151 PROCEDURAL CONFLICT-RESOLUTION

 2.201 PROCEDURAL PRODUCTION-FIRED FIND-PROMPT

 2.201 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

 2.201 PROCEDURAL CLEAR-BUFFER VISUAL

 2.201 PROCEDURAL CONFLICT-RESOLUTION

 2.286 VISION Encoding-complete VISUAL-LOCATION2-0-0 NIL

 2.286 VISION SET-BUFFER-CHUNK VISUAL TEXT1

 2.286 PROCEDURAL CONFLICT-RESOLUTION

 2.336 PROCEDURAL PRODUCTION-FIRED RESPOND-NEXT

 2.336 PROCEDURAL CLEAR-BUFFER VISUAL

 2.336 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.336 PROCEDURAL CLEAR-BUFFER MANUAL

 2.336 MOTOR PRESS-KEY m

 2.336 DECLARATIVE START-RETRIEVAL

 2.336 DECLARATIVE RETRIEVED-CHUNK N

 2.336 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL N

 2.336 PROCEDURAL CONFLICT-RESOLUTION

 2.586 PROCEDURAL CONFLICT-RESOLUTION

 2.636 PROCEDURAL CONFLICT-RESOLUTION

 2.736 MOTOR OUTPUT-KEY #(7 5)

 2.736 PROCEDURAL CONFLICT-RESOLUTION

 2.886 PROCEDURAL CONFLICT-RESOLUTION

 2.936 PROCEDURAL PRODUCTION-FIRED RESPOND-FINAL

 2.936 PROCEDURAL CLEAR-BUFFER RETRIEVAL

 2.936 PROCEDURAL CLEAR-BUFFER MANUAL

 2.936 MOTOR PRESS-KEY n

 2.936 PROCEDURAL CONFLICT-RESOLUTION

 2.986 PROCEDURAL CONFLICT-RESOLUTION

 3.036 PROCEDURAL CONFLICT-RESOLUTION

 3.136 MOTOR OUTPUT-KEY #(6 5)

 3.136 PROCEDURAL CONFLICT-RESOLUTION

 3.286 PROCEDURAL CONFLICT-RESOLUTION

 3.286 ------ Stopped because no events left to process

("next" T)

The model successfully completed the task. So, now it looks like the model is working correctly,

but we should remove the seed parameter setting and run a few more tests to make sure.

Running some additional tests seems to show that the model is now able to perform the task as

expected. Given some of the issues that we encountered however, there is some additional

testing that might be worthwhile to perform. Because we had issues with where the letter and

prompts were displayed it might be a good idea to change the code which presents those items to

make sure that the model can perform the task regardless of where the items are on the screen.

We will not work through those tests here, but you should try that out on your own to see what

happens. In addition to that you may also want to consider implementing some of the proposed,

but not chosen, fixes that were described as we encountered some of the problems to see how

those solutions differ in performance, if at all, from the options that were chosen. Finally, you

might also want to consider alternative designs for this task, and some things to consider would

be changes to the initial letter representations and retrieval strategies which start by retrieve the

initial letter.

Additional Environment Tools

To debug this model we have relied on reading the trace, inspecting the buffer contents and

status, and using the stepper. Those are important skills to learn because they will be useful for

almost all ACT-R modeling tasks. However, there are some other tools available in the

Environment which we could also have used while working with this model. The tools in the

“Tracing” and “History” sections of the Control Panel can often be useful when working with

larger models or models which run for longer periods of time. We will briefly describe some of

those tools here and provide some suggestions for how they may be useful. For more details on

using those tools you should consult the Environment’s manual which is included in the docs

directory of the ACT-R 6 distribution.

General Usage

The tools in the “History” and “Tracing” sections of the control panel must be enabled before

they will work. There are two ways to enable a particular tool. Either it can be opened before

running the model as is done with the Stepper or one can set the appropriate parameters in the

model to enable it. Enabling one of these tools makes the system record some additional details

as it runs which can then be displayed after the model has stopped. Unlike the Stepper, these

tools will not update automatically and one will have to request the information be displayed by

pressing a button in the tool.

Graphic Traces

Instead of reading through the text based trace one can instead use a graphic representation of the

model’s activities. The “Horiz. Buffer Trace” and “Vert. Buffer Trace” buttons open viewers

which will show the activities the model performed for each buffer in the model. The only

difference between the two is which way the display is oriented – horizontally or vertically. To

get the trace you need to hit the “Get trace” button after the model has run. Here is what that will

look like using the horizontal tool after running the final version of the model:

On the left we see the names of all the buffers and along the bottom we see the time. For each

buffer there are boxes displayed which correspond to the actions which occurred related to that

buffer. The boxes in the production row show the names of the productions which fired, but for

the other buffers they display the chunk-type of the request which was made at the top of the box

and the name of the resulting chunk (if there was one) along the bottom.

For this task, since the model was relatively small there may not have been much benefit to using

the graphic trace over the text trace for debugging purposes. For larger models however it may

be easier to find problems using the graphic trace because things like dependencies may be easier

to see with the graphic representation. For example, it may be easier to see why encode-letter

isn’t selected until time .250 in the graph above than in the text trace because the dependence on

the completion of the imaginal buffer’s action is more obvious.

Production Graph

The “Production Graph” tool can be used to show a graph of the production transitions which

occur in the model. Here is what that looks like for the final version of the model using the “All

Transitions” display:

It shows the sequence of productions which occurred in the model from start to end. This

provides an easy way to compare the model’s production firings to what we would expect. It can

also help with detecting problems along the way because it also shows productions which match

but are not selected which would require turning on additional traces to see in the text trace. In

particular here is a view of the graph for our model version 6 which occasionally made errors on

a trial where it performed correctly:

The dotted line shows us that the respond-next production could have fired after encode-letter

but didn’t. That would have let us know that there was a problem without having to run

additional tests to find a trial where the model actually responded incorrectly.

Production History

The “Production History” tool is similar to the “Production Graph” except that it shows the

production selection and firing information in a chart where each column corresponds to a

conflict resolution action. Here is the same model run as shown in the graph above:

The green boxes are the selected productions, red means it did not match, and orange means that

it matched but was not selected. In addition to that, the tool will also display the whynot

information for the unselected productions at the bottom when the mouse cursor is placed over

the red boxes to show why that production was not selected during that specific conflict

resolution event. In longer running models having all the whynot information recorded for

inspection afterwards can be much easier than stepping through the model to particular times and

then requesting the whynot information.

Buffer History

The “Buffer History” tool records all of the changes which occur to the buffers during a run.

Here is the display for a run of the final model in this task:

In the column on the left are all the times at which some buffer change occurred in the model.

The middle column shows the names of all the buffers. Picking a time and a buffer will then

cause the window on the right to display both the buffer status information as well as the chunk

which was in that buffer at that time in the model run. Like the “Production History” tool this

can be helpful for larger models because the information is available for all the model’s actions

without having to use the stepper to see them individually. In addition to that, since one can

have multiple “Buffer History” windows open, it is easy to compare the contents and states of a

buffer at different times during the run.

