
Unit2 Model Code Description

This document will describe the Lisp code that controls the experiments from unit 2 and

how ACT-R is interfaced to them. One thing to note is that it is not necessary that one

write the experiments for models in Lisp, but since ACT-R runs in Lisp it is far and away

the easiest way to do it. There are tools provided with ACT-R which attempt to make the

task more manageable when doing so, and these components are called the ACT-R GUI

Interface (AGI). It is not required that you use these tools (ACT-R can process and

manipulate windows that contain simple interface elements built in MCL, ACL and

LispWorks automatically), but one advantage of the AGI is that it works the same on

different systems. Thus, your model will be able to run on any machine that is running

ACT-R 6.0 even if it does not have a graphic display because the AGI also works with a

virtual window abstraction built into ACT-R.

Before getting into the specific code, there are some details about the structure of the code

that should be addressed. For many of the experiments in the tutorial there will typically

be one function that runs the experiment for either the model or a person. Most of the

setup and control is the same regardless of whether it is a person or model doing the task,

but the code necessary to actually “run” the model and person are different. To indicate

which participant to run, most of the units will require specifying the symbol human for

the function to run a person and will run the model otherwise. The code could also be

written with two separate functions, one for a model and one for a human participant, but

by using one function it is easier to see what pieces are the same and which differ.

Now we will look at the specific code. Here is the experiment code from the demo2

model (everything that is outside of define-model except for the clear-all call):

(defvar *response* nil)

(defmethod rpm-window-key-event-handler ((win rpm-window) key)

 (setf *response* (string key))

 (clear-exp-window)

 (proc-display))

(defun do-demo2 (&optional who)

 (reset)

 (let* ((lis (permute-list '("B" "C" "D" "F" "G" "H"

 "J" "K" "L" "M" "N" "P"

 "Q" "R" "S" "T" "V" "W"

 "X" "Y" "Z")))

 (text1 (first lis))

 (window (open-exp-window "Letter recognition")))

 (add-text-to-exp-window :text text1 :x 125 :y 150)

 (setf *response* nil)

 (install-device window)

 (proc-display)

 (if (not (eq who 'human))

 (run 10 :real-time t)

 (while (null *response*)

 (allow-event-manager window)))

 response))

Now, we will describe that code in detail and highlight the ACT-R and AGI functions

used which will be described in detail at the end of this text.

First, it defines a global variable called *response*:

(defvar *response* nil)

This variable is going to be used to record the key pressed during the trial.

Next we see the method (a function that is specific to a particular class of objects, in this

case the rpm-window) that is automatically called by the system when a key press occurs

in an experiment window regardless of where that key press came from (a model or a real

participant). It is passed two parameters, the window in which the key press occurred and

the character representing the key that was pressed.

(defmethod rpm-window-key-event-handler ((win rpm-window) key)

In this experiment it does the following:

Set the global variable *response* to a string containing the key pressed. It is put in a

string because it is easier to compare strings ignoring case (as will be done in the unit

assignment’s experiment):

 (setf *response* (string key))

Erases the contents of the window using a function from the AGI:

 (clear-exp-window)

and then it makes sure that the model updates its visual representation of the window

using the ACT-R command proc-display (that has no effect if a person is doing the task):

 (proc-display))

Next is the function that runs the experiment. It takes one optional parameter which can

be used to specify that a person is doing the task:

(defun do-demo2 (&optional who)

The first thing it does is reset the ACT-R system. This is done for both the model and for

real participants. It is important for the model so that all of its components are restored to

their initial settings to prepare it to do the task. For a real participant this is only really

necessary so that the seed parameter set with sgp in the task restores the initial seed for

the pseudo-random number generator so that the same trial is generated every time:

 (reset)

Then it defines some local variables. The first one is a list of letters that are randomized

with the AGI function permute-list:

 (let* ((lis (permute-list '("B" "C" "D" "F" "G" "H"

 "J" "K" "L" "M" "N" "P"

 "Q" "R" "S" "T" "V" "W"

 "X" "Y" "Z")))

It then defines a variable called text1 with the first letter from that randomized list:

 (text1 (first lis))

Then it defines a variable called window to hold the window returned from the AGI

function open-exp-window which actually opens a window for use in the task:

 (window (open-exp-window "Letter recognition")))

Now it displays the letter in the window with an AGI function:

 (add-text-to-exp-window :text text1 :x 125 :y 150)

then it clears the *response* variable:

 (setf *response* nil)

The next two actions are necessary to set things up for the model. They do not affect

things when a person is doing the task, but for simplicity they are executed regardless of

who is doing the task. The first is to tell the model with what it should be interacting. In

this case that is the window for the experiment:

 (install-device window)

Then the model is told to visually process that display:

 (proc-display)

Depending on who the participant is (whether who is human or not) it performs the

necessary steps to execute the task:

 (if (not (eq who 'human))

If it is the model (because who is anything other than human), then the model is started

running for up to 10 seconds running in real time:

 (run 10 :real-time t)

If a person is doing the task then the function just waits for the *response* variable to

change and calls the allow-event-manager AGI function while it waits to make sure that

any real system events (OS or Lisp) that may be necessary are taken care of:

 (while (null *response*)

 (allow-event-manager window)))

Finally, the function returns the value of the *response* variable:

 response))

The code to present the assignment’s experiment is very similar to the code for the demo2

model. The only real differences are that more items are displayed and the response is

checked for correctness at the end. Here is its do-unit2 function with notes on the

differences:

 (defun do-unit2 (&optional who)

 (reset)

 (let* ((letters (permute-list '("B" "C" "D" "F" "G" "H" "J" "K"

 "L" "M" "N" "P" "Q" "R" "S" "T"

 "V" "W" "X" "Y" "Z")))

Define a variable called target to hold the different letter and one called foil to hold the

letter that will be shown twice:

 (target (first letters))

 (foil (second letters))

 (window (open-exp-window "Letter difference"))

Create three more variables that are all set to the foil letter for now:

 (text1 foil)

 (text2 foil)

 (text3 foil))

Using the act-r-random function, randomly assign the target to one of the three letters:

 (case (act-r-random 3)

 (0 (setf text1 target))

 (1 (setf text2 target))

 (2 (setf text3 target)))

Display all three letters:

 (add-text-to-exp-window :text text1 :x 125 :y 75)

 (add-text-to-exp-window :text text2 :x 75 :y 175)

 (add-text-to-exp-window :text text3 :x 175 :y 175)

 (setf *response* nil)

This time we will only install the device and have the model process the display if the

model is doing the task and then run the same as for the demo task:

 (if (not (eq who 'human))

 (progn

 (install-device window)

 (proc-display)

 (run 10 :real-time t))

 (while (null *response*)

 (allow-event-manager window)))

If the response matches the target letter then return correct otherwise return nil:

 (if (string-equal *response* target)

 'correct

 nil)))

Here are more details on the ACT-R and AGI functions that were used. Because this is

the first model that interacts with an experiment there are a lot of new functions to

describe. Many of these will be used in almost all of the remaining models in the tutorial

and later units will have fewer new functions introduced.

GUI creation and interaction

These functions are used to create windows and display information with which a model

can interact effectively independent of the particular Lisp implementation (though

displaying windows with which a person interacts is dependent on using either the ACT-

R environment or one of the supported Lisps).

Open-exp-window – this function takes one required parameter which is the title for the

window. It can also take several keyword parameters that control how the window is

displayed and will be introduced in later units as necessary. This function opens a

window for performing an experiment and returns that window. If there is already an

experiment window open with that title it clears its contents and brings it to the

foreground. If there is not already an experiment window with that title it closes the

previous experiment window if one exists and opens a new window with the requested

title and brings it to the foreground.

Add-text-to-exp-window – this function draws a static text string on the window that

was opened using open-exp-window. It takes a few keyword parameters. :text specifies

the text string to display. :x and :y specify the pixel coordinate of the upper-left corner of

the box in which the text is to be displayed, and there are 3 others that are not used here

:height, :width and :color. Height and width specify the size of the box in which to draw

the text in pixels. The default value for :height is 20 and for :width is 75. Color specifies

in which color the text will be drawn and defaults to black (there is a limited set of colors

which are supported).

Clear-exp-window - this function takes no parameters. It removes all of the items that

have been added to the experiment window that was opened with open-exp-window.

Rpm-window-key-event-handler – this method can be defined by the modeler to

process key presses that occur in the experiment window. The method must take two

parameters. The first needs to be an instance of the rpm-window class. When an

experiment window that has been opened with open-exp-window receives a key press

(either from a model or a real user) it will pass the character that represents the key as the

second parameter to this method and the first parameter will be the experiment window

itself.

ACT-R Model Interaction and Setup

These are the functions that will be used over and over again for setting up and running

the model.

Reset – this function call does the same thing as pressing the “Reset” button in the

environment. It returns the model to time 0 and sets the state of the parameters, working

memory, and productions to those specified in the define-model call, or reloads the file if

there is no code in the define-model call.

Install-device – this function takes one parameter which must be a window or device (a

device is an abstract representation of the world for ACT-R which can be used for more

complicated interactions). This tells the model which window (or device) it is interacting

with. All of the models actions (key presses, mouse movement and mouse clicks) will be

sent to this window and the contents of this window will be what the model can “see”.

Proc-display – this function can take one keyword parameter called clear (which is not

used here). It tells the model to process the display for visual information. This function

makes the model “look” at the window. Whenever the window is changed you must call

proc-display again to make sure the model becomes aware of those changes. The re-

encoding described in the unit can only happen after this function is called, and the

bottom-up visual attention mechanism discussed in unit 3 (buffer stuffing) will also only

occur when this function is called. The keyword parameter :clear if specified as t will

cause the model to treat the window as all new items – everything there will be

considered unattended.

Run – this function takes one required parameter which is the time to run a model in

seconds and a keyword parameter called :real-time. It runs the model just like pressing

the “Run” button in the environment. The model will run until either the requested

amount of time passes, or there is nothing left for the model to do (no productions will

fire and there are no pending actions that can change the state). If the keyword parameter

:real-time is specified as t, then the model is advanced in step with real time instead of

being allowed to run as fast as possible in its own simulated time. That can be a useful

thing to do when debugging a model or if it has to interact with software that is not

designed to run with the model’s simulated time. It is also possible for the modeler to

specify an alternative “real time” clock, but that is beyond the scope of the tutorial.

Miscellaneous ACT-R/AGI Functions

These functions perform some tasks that can be useful when writing experiments for the

model.

Act-r-random – this function operates like the ANSI Lisp function random except that it

does not accept an optional random state because it uses a random state specific to the

model. This allows models to perform identically on all Lisp platforms using a seed

value that is easy to specify and independent of the pseudo-random number generator

algorithm built into a particular Lisp. The algorithm used is the Mersenne Twister

generator which is considered to be among the best available for Monte Carlo simulations

and is typically the same one that is use internally for the Lisp random numbers as well.

Permute-list – this function takes one parameter which must be a list and returns a

randomly ordered copy of that list. It uses the act-r-random function to do so.

While – this is a looping construct. It takes an arbitrary number of parameters. The first

parameter specifies the test condition, and the rest specify the body of the loop. The test

is evaluated and if it returns anything other than nil all of the forms in the body are

executed in order. This is repeated until the test returns nil. Thus, while the test is true

(non-nil) the body is executed.

Allow-event-manager – this function takes one parameter, which must be an experiment

window. It calls the appropriate function of the system to handle user interaction. Giving

the system a chance to handle the user interactions is important because otherwise the

rpm-window-key-event-handler method may never be called for a real participant and the

system may hang, unable to process user events.

