
ACT-R Tutorial 1-May-12 Unit Five

 1

Unit 5: Activation and Context

The goal of this unit is to introduce the components of the activation equation that reflect the

context of a declarative memory retrieval.

5.1 Spreading Activation

The first context issue we will consider is called spreading activation. The chunks in the buffers

provide a context in which to perform a retrieval. Those chunks spread activation to the chunks

in declarative memory based on the contents of their slots. They spread an amount of activation

based on their relation to the other chunks, which we call their strength of association. This

essentially results in increasing the activation of those chunks which are related to the current

context.

The equation for the activation A
i
 of a chunk i including spreading activation is defined as:

k j

jikjii SWBA

Measures of Prior Learning, B
i
: The base-level activation reflects the recency and frequency

of practice of the chunk as described in the previous unit.

Across all buffers: The elements k being summed over are the buffers.

Sources of Activation: The elements j being summed over are the chunks which are in the slots

of the chunk in buffer k.

Weighting: Wkj is the amount of activation from source j in buffer k.

Strengths of Association: S
ji

is the strength of association from source j to chunk i.

: The noise value as described in the last unit.

The weights, Wkj, of the activation spread default to an even distribution from each slot in a

buffer. The total amount of source activation for a buffer will be called Wk and is settable for

each buffer. The Wkj values are then set to Wk /nk where nk is the number of chunks in the slots

of the chunk in buffer k.

The strength of association, Sji, between two chunks j and i is 0 if chunk j is not the value of a

slot of chunk i and j and i are not the same chunk. Otherwise, it is set using this equation:

ACT-R Tutorial 1-May-12 Unit Five

 2

)ln(jji fanSS

S: The maximum associative strength (set with the :mas parameter)

fanj: is the number of chunks in declarative memory in which j is the value of a slot plus one for

chunk j being associated with itself. [That assumes the simple case where chunk j does not

appear in more than one slot of any given chunk i which will be the case for the models in this

unit. See the reference manual or the modeling text for this unit for the more general

description.]

That is the general form of the spreading activation equation. However, by default, only the goal

buffer serves as a source of activation. The Wgoal value defaults to 1 (set with the :ga parameter)

and for all other buffers, Wbuffer, defaults to 0, but can be set to non-zero values with the

:<buffer>-activation parameters (where <buffer> is replaced with the actual name of the buffer

for example :imaginal-activation for the imaginal buffer). Therefore, in the default case, the

activation equation can be simplified to:

j

jijii SWBA

With W reflecting the value of the :ga parameter and Wj being W/n where n is the number of

chunks in slots of the current goal buffer chunk.

Here is a diagram to help you visualize how the spreading activation works. Consider a goal

chunk which has two chunks in its slots when a retrieval is requested and that there are three

chunks in declarative memory which match the retrieval request for which the activations need to

be determined.

ACT-R Tutorial 1-May-12 Unit Five

 3

Each of the potential chunks also has a base-level activation which we will denote as Bi, and thus

the total activation of the three chunks are then:

A1 B1 W1S11 W2S21

A2 B2 W1S12 W2S22

A3 B3 W1S13 W2S23

and with the default value for the goal activation W1 = W2 = 1/2.

There are two notes about using spreading activation. First, by default, spreading activation is

disabled because :mas defaults to the value nil. In order to enable the spreading activation

calculation it must be set to a positive value. The other thing to note is that there is no

recommended value for the :mas parameter, but one almost always wants to set :mas high

enough that all of the Sji values are positive.

5.2 The Fan Effect

Anderson (1974) performed an experiment in which participants studied 26 facts such as the

following sentences:

S11

W1

W2

S12

S13

S21

S22

S23

Slot 1

Slot 2

Source1

Source 2

chunk1

chunk2

chunk3

Goal

ACT-R Tutorial 1-May-12 Unit Five

 4

 1. A hippie is in the park.

 2. A hippie is in the church.

 3. A hippie is in the bank.

 4. A captain is in the park.

 5. A captain is in the cave.

 6. A debutante is in the bank.

 7. A fireman is in the park.

 8. A giant is in the beach.

 9. A giant is in the dungeon.

 10. A giant is in the castle.

 11. A earl is in the castle.

 12. A earl is in the forest.

 13. A lawyer is in the store.

 ...

After studying these facts, they had to judge whether they saw facts such as the following:

A hippie is in the park.

A hippie is in the cave.

A lawyer is in the store.

A lawyer is in the park.

A debutante is in the bank.

A debutante is in the cave.

A captain is in the bank.

which contained both studied sentences (targets) and new sentences (foils).

The people and locations for the study sentences could occur in any of one, two, or three of the

study sentences. That is called their fan. The following tables show the recognition latencies

from the experiment in seconds for targets and foils as a function of person fan and location fan:

 Targets Foils

Location Person Fan Person Fan

 Fan 1 2 3 Mean 1 2 3 Mean

 1 1.111 1.174 1.222 1.169 1.197 1.221 1.264 1.227

 2 1.167 1.198 1.222 1.196 1.250 1.356 1.291 1.299

 3 1.153 1.233 1.357 1.248 1.262 1.471 1.465 1.399

 Mean 1.144 1.202 1.357 1.20 1.236 1.349 1.340 1.308

The main effects in the data are that as the fan increases the time to respond increases and that

foil sentences take longer to respond to than the targets. We will now show how these effects

can be modeled using spreading activation.

5.3 Fan Effect Model

The fan model in the unit 5 materials contains a model for the testing phase of the experiment.

The study portion of the task is not included for simplicity and the model already has chunks in

ACT-R Tutorial 1-May-12 Unit Five

 5

declarative memory that encode all of the studied sentences. It can perform one trial of the

testing phase when run. Here is a trace of the model performing one trial for the target sentence

“The lawyer is in the store”:

> (fan-sentence-model "lawyer" "store" t 'person)

0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

0.000 PROCEDURAL CONFLICT-RESOLUTION

0.050 PROCEDURAL PRODUCTION-FIRED FIND-PERSON

0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.050 VISION Find-location

0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0

0.050 PROCEDURAL CONFLICT-RESOLUTION

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-VISUAL-LOCATION

0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.100 PROCEDURAL CLEAR-BUFFER VISUAL

0.100 PROCEDURAL CONFLICT-RESOLUTION

0.185 VISION Encoding-complete VISUAL-LOCATION1-0-0 NIL

0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0

0.185 PROCEDURAL CONFLICT-RESOLUTION

0.235 PROCEDURAL PRODUCTION-FIRED RETRIEVE-MEANING

0.235 PROCEDURAL CLEAR-BUFFER VISUAL

0.235 PROCEDURAL CLEAR-BUFFER RETRIEVAL

0.235 DECLARATIVE START-RETRIEVAL

0.235 DECLARATIVE RETRIEVED-CHUNK LAWYER

0.235 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL LAWYER

0.235 PROCEDURAL CONFLICT-RESOLUTION

0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL COMPREHEND-SENTENCE0

0.250 PROCEDURAL CONFLICT-RESOLUTION

0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-PERSON

0.300 PROCEDURAL CLEAR-BUFFER RETRIEVAL

0.300 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.300 VISION Find-location

0.300 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION5-0

0.300 PROCEDURAL CONFLICT-RESOLUTION

0.350 PROCEDURAL PRODUCTION-FIRED ATTEND-VISUAL-LOCATION

0.350 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.350 PROCEDURAL CLEAR-BUFFER VISUAL

0.350 PROCEDURAL CONFLICT-RESOLUTION

0.435 VISION Encoding-complete VISUAL-LOCATION5-0-0 NIL

0.435 VISION SET-BUFFER-CHUNK VISUAL TEXT1

0.435 PROCEDURAL CONFLICT-RESOLUTION

0.485 PROCEDURAL PRODUCTION-FIRED RETRIEVE-MEANING

0.485 PROCEDURAL CLEAR-BUFFER VISUAL

0.485 PROCEDURAL CLEAR-BUFFER RETRIEVAL

0.485 DECLARATIVE START-RETRIEVAL

0.485 DECLARATIVE RETRIEVED-CHUNK STORE

0.485 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL STORE

0.485 PROCEDURAL CONFLICT-RESOLUTION

0.535 PROCEDURAL PRODUCTION-FIRED ENCODE-LOCATION

0.535 PROCEDURAL CLEAR-BUFFER RETRIEVAL

0.535 PROCEDURAL CONFLICT-RESOLUTION

0.585 PROCEDURAL PRODUCTION-FIRED RETRIEVE-FROM-PERSON

0.585 PROCEDURAL CLEAR-BUFFER RETRIEVAL

0.585 DECLARATIVE START-RETRIEVAL

0.585 PROCEDURAL CONFLICT-RESOLUTION

0.839 DECLARATIVE RETRIEVED-CHUNK P13

0.839 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P13

0.839 PROCEDURAL CONFLICT-RESOLUTION

0.889 PROCEDURAL PRODUCTION-FIRED YES

0.889 PROCEDURAL CLEAR-BUFFER IMAGINAL

ACT-R Tutorial 1-May-12 Unit Five

 6

0.889 PROCEDURAL CLEAR-BUFFER RETRIEVAL

0.889 PROCEDURAL CLEAR-BUFFER MANUAL

0.889 MOTOR PRESS-KEY k

0.889 PROCEDURAL CONFLICT-RESOLUTION

1.039 PROCEDURAL CONFLICT-RESOLUTION

1.089 PROCEDURAL CONFLICT-RESOLUTION

1.099 MOTOR OUTPUT-KEY #(8 4)

1.099 PROCEDURAL CONFLICT-RESOLUTION

1.189 PROCEDURAL CONFLICT-RESOLUTION

1.189 ------ Stopped because no events left to process

To run the model through one trial of the test phase you can call the function fan-sentence-

model. It takes four parameters. The first is a string of the person for the probe sentence. The

second is a string of the location for the probe sentence. The third is whether the correct answer

is true (t) or false (nil), and the last is either ‘person or ‘location to choose which of the retrieval

productions is used (more on that later). The model can be run over each of the conditions to

produce a data fit using the fan-experiment function (you will probably want to set the :v

parameter to nil before running the whole experiment):

> (fan-experiment)

CORRELATION: 0.864

MEAN DEVIATION: 0.053

TARGETS:

 Person fan

 Location 1 2 3

 fan

 1 1.099 (T) 1.157 (T) 1.205 (T)

 2 1.157 (T) 1.227 (T) 1.286 (T)

 3 1.205 (T) 1.286 (T) 1.354 (T)

FOILS:

 1 1.245 (T) 1.290 (T) 1.328 (T)

 2 1.290 (T) 1.335 (T) 1.373 (T)

 3 1.328 (T) 1.373 (T) 1.411 (T)

Two parameters were estimated to produce that fit to the data. They are the latency factor, which

is the F in the retrieval latency equation from last chapter, set to .63 and the maximum

associative strength, the S parameter in the Sji equation above, set to 1.6. In addition, because the

model uses the imaginal buffer to hold the representation of the sentence, we set the spreading

activation for the imaginal buffer to the value 1.0 (which is the same as the default value for the

goal buffer). We will now look at how this model performs the task and how spreading

activation leads to the effects in the data.

5.3.1 Model Representations

The study sentences are encoded in comprehend-sentence chunks like this:

P13

 isa comprehend-sentence

 relation in

 arg1 lawyer

 arg2 store

ACT-R Tutorial 1-May-12 Unit Five

 7

which are propositions encoding the result of past study in the form of an association among the

concepts (in this case in, lawyer, and store for “The lawyer is in the store”).

There are also meaning chunks which connect the text read from the display to the concepts. For

instance, relevant to the case above we have

 lawyer

 isa meaning

 word "lawyer"

 store

 isa meaning

 word "store"

The base-level activations of these meaning chunks have been set to 10 to reflect the fact that

they are well practiced and should not fail to be retrieved, but the activations of the comprehend-

sentence chunks are left at the default of 0 to reflect that they are relatively newer having only

been learned during this experiment.

5.3.2 Perceptual Encoding

In this section we will briefly describe the productions that perform the perceptual portion of the

trial. This is similar to the steps that have been done in previous models and thus it should be

fairly familiar. One small difference is that this model does not use explicit state markers in the

goal (in fact it does not place a chunk into the goal buffer at all) and instead relies on the states

of the buffers and modules involved to constrain the productions.

The entire sentence is presented on the screen, but the model only reads the person and location

words from the display to perform the task. If the model were to read all of the words in the

sentence it would be difficult to be able to respond fast enough to match the experimental data,

and in fact studies of the fan effect done using an eye tracker verify that in general participants

only fixate those two words from the sentences during the testing trials. To make this easier to

handle for the model the sentences are presented with the words in fixed locations on the display.

To read and encode the words the model goes through a four step process.

The first production to fire issues a request to the visual-location buffer to find the person word

and it also requests that the imaginal module create a new chunk to hold the sentence being read

from the screen:

(P find-person

 ?visual-location>

 buffer unrequested

 ==>

 +imaginal>

 ISA comprehend-sentence

ACT-R Tutorial 1-May-12 Unit Five

 8

 +visual-location>

 ISA visual-location

 > screen-x 105

 < screen-x 135

)

Although the text for the word always starts at the same location its exact position will vary

based on the length of the word, and thus a range test is used to specify where that word should

be found.

Also of interest in that production is the query on the LHS. The check that the visual-location

buffer holds a chunk which was not requested is a way to test that a new display has been

presented. The buffer stuffing mechanism will automatically place a chunk into the buffer if it is

empty when the screen changes and because that chunk was not the result of a request it is

tagged as unrequested. Thus, this production will match whenever the screen has recently

changed if the visual-location buffer was empty at the time of the change.

The next production harvests the requested visual-location and requests a shift of attention to it:

(P attend-visual-location

 =visual-location>

 ISA visual-location

 ?visual-location>

 buffer requested

 ?visual>

 state free

 ==>

 +visual>

 ISA move-attention

 screen-pos =visual-location

)

Then the chunk in the visual buffer is harvested and a retrieval request is made to request the

chunk that represents the meaning of that word:

(P retrieve-meaning

 =visual>

 ISA text

 value =word

 ==>

 +retrieval>

 ISA meaning

 word =word

)

Finally, that retrieval request is harvested and the meaning chunk is placed into a slot of the

chunk in the imaginal buffer:

ACT-R Tutorial 1-May-12 Unit Five

 9

(P encode-person

 =retrieval>

 ISA meaning

 =imaginal>

 ISA comprehend-sentence

 arg1 nil

==>

 =imaginal>

 arg1 =retrieval

 +visual-location>

 ISA visual-location

 > screen-x 400

 < screen-x 430

)

This production then issues the visual-location request to find the location word and essentially

the same sequence of productions fire to attend and encode the location ending with the encode-

location production instead of encode-person.

5.3.3 Determining the Response

After the encoding has happened the imaginal chunk will look like this for the sentence “The

lawyer is in the store.”:

COMPREHEND-SENTENCE0-0

 ISA COMPREHEND-SENTENCE

 RELATION NIL

 ARG1 LAWYER

 ARG2 STORE

At that point one of these two productions will be selected and fired to retrieve a study sentence:

(P retrieve-from-person

 =imaginal>

 ISA comprehend-sentence

 arg1 =person

 arg2 =location

 ?retrieval>

 state free

 buffer empty

==>

 =imaginal>

 +retrieval>

 ISA comprehend-sentence

 arg1 =person

)

ACT-R Tutorial 1-May-12 Unit Five

 10

(P retrieve-from-location

 =imaginal>

 ISA comprehend-sentence

 arg1 =person

 arg2 =location

 ?retrieval>

 state free

 buffer empty

==>

 =imaginal>

 +retrieval>

 ISA comprehend-sentence

 arg2 =location

)

A thorough model of the task would have those two productions competing and one would

randomly be selected. However, to simplify things for demonstration the experiment code which

runs this task forces one or the other to be selected for each trial. The data is then averaged over

two runs of each trial with one trial using retrieve-from-person and the other using retrieve-from-

location.

One important thing to notice is that those productions request the retrieval of a studied chunk

based only on one of the items from the probe sentence. By doing so it ensures that one of the

study sentences will be retrieved instead of a failure in the event of a foil. If retrieval failure

were used by the model to detect the foils then there would be no difference in response times for

the foil probes because the time to fail is based solely upon the retrieval threshold, but the data

clearly shows that the fan of the items affects the time to respond to both targets and foils.

After one of those productions fires a comprehend-sentence chunk representing a study trial will

be retrieved and one of the following productions will fire to produce a response:

(P yes

 =imaginal>

 ISA comprehend-sentence

 arg1 =person

 arg2 =location

 =retrieval>

 ISA comprehend-sentence

 arg1 =person

 arg2 =location

 ?manual>

 state free

==>

 +manual>

 ISA press-key

 key "k"

)

ACT-R Tutorial 1-May-12 Unit Five

 11

(P mismatch-person

 =imaginal>

 ISA comprehend-sentence

 arg1 =person

 arg2 =location

 =retrieval>

 ISA comprehend-sentence

 - arg1 =person

 ?manual>

 state free

==>

 +manual>

 ISA press-key

 key "d"

)

(P mismatch-location

 =imaginal>

 ISA comprehend-sentence

 arg1 =person

 arg2 =location

 =retrieval>

 ISA comprehend-sentence

 - arg2 =location

 ?manual>

 state free

==>

 +manual>

 ISA press-key

 key "d"

)

If the retrieved sentence matches the probe then the model responds with the true response, “k”,

and if either one of the components does not match then the model responds with “d”.

5.4 Analyzing the Retrieval of the Critical Study Chunk in the Fan model

The perceptual and encoding actions the model performs for this task have a fixed cost of .585

seconds and the time to respond after retrieving a comprehend-sentence chunk is .260 seconds.

Those times are constant across all trials. The difference in the conditions will result from the

time it takes to retrieve the studied sentence. Recall from the last unit that the time to retrieve a

chunk i is based on its activation and specified by the equation:

ACT-R Tutorial 1-May-12 Unit Five

 12

iA

i FeTime

Thus, it is differences in the activations of the comprehend-sentence chunks which will result in

the different times to respond to different trials.

The imaginal chunk at the time of the retrieval (after either retrieve-from-person or retrieve-

from-location fires) will look like this:

COMPREHEND-SENTENCE0-0

 ISA COMPREHEND-SENTENCE

 RELATION NIL

 ARG1 person

 ARG2 location

where person and location will be the chunks that represent the meanings for the particular probe

being presented.

The retrieval request will look like this:

+retrieval>

 isa comprehend-sentence

 arg1 person

or this:

+retrieval>

 isa comprehend-sentence

 arg2 location

depending on which of the productions was chosen to perform the retrieval.

The important thing to note is that because the sources of activation in the buffer are the same for

either retrieval request the spreading activation will not differ between the two cases. You might

wonder then why we would need to have both options. That will be described in the detailed

examples below.

5.4.1 A note on chunks in buffers and the :dcnn parameter

Something that has been mentioned before is that buffers hold copies of chunks. A side effect of

that is that when the name of that chunk is used (as is done with the retrievals in the encode-

person and encode-location productions) it does not match the name of the original chunk. Thus,

the chunk in the imaginal buffer will look like this after the encode-person production fires and

the modification to the imaginal buffer occurs:

ACT-R Tutorial 1-May-12 Unit Five

 13

COMPREHEND-SENTENCE0-0

 ISA COMPREHEND-SENTENCE

 RELATION NIL

 ARG1 LAWYER-0

 ARG2 NIL

because the copy of the lawyer chunk, named laywer-0, which was in the retrieval buffer was

placed into the arg1 slot.

The lawyer-0 chunk is not modified by the model while it is in the retrieval buffer, and the

retrieval buffer is also cleared by that production. Thus, once that clearing occurs the laywer-0

chunk is merged into declarative memory and because it is a perfect match to the lawyer chunk

those two chunks are merged together so that the names lawyer-0 and lawyer refer to the same

chunk. Both names may occur however in the slots of other chunks.

As discussed in the previous unit, the :ncnar parameter can be used to have the system normalize

such references to make it easier to debug the system. If :ncnar is enabled (not nil) then the

setting of the :dcnn (dynamic chunk name normalizing) parameter determines when those names

are corrected. If :dcnn is set to t, which is the default value, then those changes are made

immediately while the model runs. Since this model leaves the :dcnn parameter at the default

value of t, the chunk in the imaginal buffer will be changed to look like this after the lawyer-0

and lawyer chunks are merged:

COMPREHEND-SENTENCE0-0

 ISA COMPREHEND-SENTENCE

 RELATION NIL

 ARG1 LAWYER

 ARG2 NIL

If :dcnn were set to nil, then the arg1 slot would continue to hold the value lawyer-0 until the

model stopped running at which time the comprehend-sentence0-0 chunk would be updated if

the :ncnar parameter were not nil. The important thing to note is that regardless of which name

is shown in the slot, once those chunks are merged the same chunk is being referenced whether a

particular slot value is normalized or not.

Often having :dcnn and :ncnar set to t makes it easier to debug a model, but sometimes it may be

useful to disable the dynamic updating so that one can more directly track a reference to a chunk

from a buffer, even if it is eventually merged, instead of having that reference lost. For this unit

the demonstration models leave :dcnn and :ncnar set to their default values of t, thus the slot

values are dynamically adjusted as the model runs.

5.4.2 A simple target trial

The first case we will look at is the target sentence “The lawyer is in the store”. Both the person

and location in this sentence have a fan of one in the experiment – they each only occur in that

one study sentence.

ACT-R Tutorial 1-May-12 Unit Five

 14

The imaginal buffer’s chunk looks like this at the time of the critical retrieval (as discussed

above):

COMPREHEND-SENTENCE0-0

 ISA COMPREHEND-SENTENCE

 RELATION NIL

 ARG1 LAWYER

 ARG2 STORE

We will now look at the retrieval which results from the retrieve-from-person production firing.

For the following traces we have enabled the activation trace parameter (:act) by setting it to t.

That causes additional information to be displayed in the trace when a retrieval attempt is made.

It shows all of the chunks that were attempted to be matched, and then for each that does match it

shows all the details of the activation computation. Here is the trace of the model when that

retrieval occurs:

 0.585 DECLARATIVE START-RETRIEVAL

Chunk P13 matches

Chunk P12 does not match

Chunk P11 does not match

Chunk P10 does not match

Chunk P9 does not match

Chunk P8 does not match

Chunk P7 does not match

Chunk P6 does not match

Chunk P5 does not match

Chunk P4 does not match

Chunk P3 does not match

Chunk P2 does not match

Chunk P1 does not match

Computing activation for chunk P13

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (LAWYER STORE)

 Spreading activation 0.45342 from source LAWYER level 0.5 times Sji 0.90685

 Spreading activation 0.45342 from source STORE level 0.5 times Sji 0.90685

Total spreading activation: 0.90685284

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P13 has an activation of: 0.90685284

Chunk P13 has the current best activation 0.90685284

Chunk P13 with activation 0.90685284 is the best

 0.585 PROCEDURAL CONFLICT-RESOLUTION

 0.839 DECLARATIVE RETRIEVED-CHUNK P13

In this case, the only chunk which matches the request is chunk p13 and it is also the only one to

receive any spreading activation. Note that this would look exactly the same if the retrieve-from-

location production had fired because it would still be the only chunk that matched the request

and the sources of activation are the same regardless of which one fires.

ACT-R Tutorial 1-May-12 Unit Five

 15

Remember that we have set the parameter F to .63, the parameter S to 1.6, and the base-level

activation for the comprehend-sentence chunks is 0 in this model.

Looking at this trace, we see the Sji values from store to p13 and lawyer to p13 are both

approximately .907. That comes from the equation:

)ln(jji fanSS

The value of S was estimated to fit the data as 1.6 and the chunk fan of both the store and lawyer

chunks is 2 (not the same as the fan from the experiment which is only one). They each occur as

a slot value in only the p13 chunk plus each chunk is always credited with a reference to itself.

Then substituting into the equation we get:

 0.90685284)2ln(6.1)13)(()13)((plawyerpstore SS

The Wj values (called the level in the activation trace) are .5 because the source activation from

the imaginal buffer is the 1.0 value which was set and there are two source chunks.

Thus the activation of chunk p13 is:

Ai Bi WjSji
j

907.)907.*5(.)907.*5(.013 pA

Finally, we see the time to complete the retrieval (the time between the start-retrieval and the

retrieved-chunk actions) is .254 seconds (.839- .585) and that was computed as:

iA

i FeTime

0.2543521863. 907.

13 eTimep

Adding that retrieval time to the fixed costs of .585 seconds to do the perception and encoding

and the .26 seconds to perform the response gives us a total of 1.099 seconds, which is the value

in the fan 1-1 cell of the model data for targets presented above.

Now that we have looked at the details of how the retrieval times are determined for the simple

case we will look at a few other cases.

ACT-R Tutorial 1-May-12 Unit Five

 16

5.4.3 A different target trial

The target sentence “The hippie is in the bank” is a more interesting case to look at. Hippie is

the person in three of the study sentences and bank is the location in two of them. Now we will

see why it takes the model longer to respond to such a probe. Here are the critical components

from the trace when retrieve-from-person is chosen:

Computing activation for chunk P3

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (HIPPIE BANK)

 Spreading activation 0.106852 from source HIPPIE level 0.5 times Sji 0.21370566

 Spreading activation 0.250693 from source BANK level 0.5 times Sji 0.5013877

Total spreading activation: 0.3575467

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P3 has an activation of: 0.3575467

Chunk P3 has the current best activation 0.3575467

Computing activation for chunk P2

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (HIPPIE BANK)

 Spreading activation 0.106852 from source HIPPIE level 0.5 times Sji 0.21370566

 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0

Total spreading activation: 0.10685283

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P2 has an activation of: 0.10685283

Computing activation for chunk P1

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (HIPPIE BANK)

 Spreading activation 0.106852 from source HIPPIE level 0.5 times Sji 0.21370566

 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0

Total spreading activation: 0.10685283

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P1 has an activation of: 0.10685283

Chunk P3 with activation 0.3575467 is the best

There are three chunks that match the request for a comprehend-sentence chunk with an arg1

value of hippie. Each receives the same amount of activation being spread from hippie. Because

hippie is a member of three chunks it has a chunk fan of 4 and thus the S(hippie)i value is:

ACT-R Tutorial 1-May-12 Unit Five

 17

 0.21370566)4ln(6.1)(ihippieS

Chunk p3 also contains the chunk bank in its arg2 slot and thus receives the source spreading

from it as well.

Now we will look at the case when retrieve-from-location fires for this probe sentence:

Computing activation for chunk P6

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (HIPPIE BANK)

 Spreading activation 0.0 from source HIPPIE level 0.5 times Sji 0.0

 Spreading activation 0.250693 from source BANK level 0.5 times Sji 0.5013877

Total spreading activation: 0.25069386

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P6 has an activation of: 0.25069386

Chunk P6 has the current best activation 0.25069386

Computing activation for chunk P3

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (HIPPIE BANK)

 Spreading activation 0.106852 from source HIPPIE level 0.5 times Sji 0.21370566

 Spreading activation 0.250693 from source BANK level 0.5 times Sji 0.5013877

Total spreading activation: 0.3575467

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P3 has an activation of: 0.3575467

Chunk P3 is now the current best with activation 0.3575467

Chunk P3 with activation 0.3575467 is the best

In this case there are only two chunks which match the request for a comprehend-sentence chunk

with an arg2 value of bank.

Regardless of which production fired to request the retrieval, chunk p3 had the highest activation

because it received spreading activation from both sources. Thus, even if there is more than one

chunk which matches the retrieval request issued by retrieve-from-person or retrieve-from-

location the correct study sentence will always be retrieved because its activation will be the

highest, and that activation value will be the same in both cases.

Notice that the activation of p3 is less than the activation that p13 had in the previous example

because the source activation being spread is less. That is because the sources here have a higher

fan, and thus a lesser Sji. Because the activation is smaller, it takes longer to retrieve such a fact

and that gives us the difference in response time effect of fan in the data.

ACT-R Tutorial 1-May-12 Unit Five

 18

5.4.4 A foil trial

Now we will look at a foil trial. The foil probe “The giant is in the bank” is similar to the target

that we looked at in the last section. The person has an experimental fan of three and the

location has an experimental fan of two. This time however there is no matching study sentence.

Here are the critical components from the trace when retrieve-from-person is chosen:

Computing activation for chunk P10

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (GIANT BANK)

 Spreading activation 0.10685283 from source GIANT level 0.5 times Sji 0.21370566

 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0

Total spreading activation: 0.10685283

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P10 has an activation of: 0.10685283

Chunk P10 has the current best activation 0.10685283

Computing activation for chunk P9

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (GIANT BANK)

 Spreading activation 0.10685283 from source GIANT level 0.5 times Sji 0.21370566

 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0

Total spreading activation: 0.10685283

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P9 has an activation of: 0.10685283

Chunk P9 matches the current best activation 0.10685283

Computing activation for chunk P8

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (GIANT BANK)

 Spreading activation 0.10685283 from source GIANT level 0.5 times Sji 0.21370566

 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0

Total spreading activation: 0.10685283

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P8 has an activation of: 0.10685283

Chunk P8 matches the current best activation 0.10685283

Chunk P10 chosen among the chunks with activation 0.10685283

There are three chunks that match the request for a comprehend-sentence chunk with an arg1

value of giant and each receives the same amount of activation being spread from giant.

However, none contain an arg2 value of bank. Thus they only get activation spread from one

source and have a lesser activation value than the corresponding target sentence probe had.

ACT-R Tutorial 1-May-12 Unit Five

 19

Because the activation is smaller, the retrieval time is greater. This results in the effect of foil

trials taking longer than target trials.

Before concluding this section however, let us look at the trace if retrieve-from-location were to

fire for this foil:

Computing activation for chunk P6

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (GIANT BANK)

 Spreading activation 0.0 from source GIANT level 0.5 times Sji 0.0

 Spreading activation 0.25069386 from source BANK level 0.5 times Sji 0.5013877

Total spreading activation: 0.25069386

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P6 has an activation of: 0.25069386

Chunk P6 has the current best activation 0.25069386

Computing activation for chunk P3

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

 Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCE0-0

 sources of activation are: (GIANT BANK)

 Spreading activation 0.0 from source GIANT level 0.5 times Sji 0.0

 Spreading activation 0.25069386 from source BANK level 0.5 times Sji 0.5013877

Total spreading activation: 0.25069386

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P3 has an activation of: 0.25069386

Chunk P3 matches the current best activation 0.25069386

Chunk P3 chosen among the chunks with activation 0.25069386

In this case there are only two chunks which match the request for a comprehend-sentence chunk

with an arg2 value of bank. Again, the activation of the chunk retrieved is less than the

corresponding target trial, but it is not the same as when retrieve-from-person fired. That is why

the model is run with each of those productions fired once for each probe with the results being

averaged together. Otherwise the foil data would only show the effect of fan for the item that

was used to retrieve the study chunk.

5.5 Partial Matching

Up to now models have either always retrieved a chunk which matched the retrieval request or

resulted in a failure to retrieve anything. Now we will look at modeling errors in recall in more

detail. There are two kinds of errors that can occur. One is an error of commission when the

wrong thing is recalled. This will occur when the activation of the wrong chunk is greater than

the activation of the correct chunk. The second is an error of omission when nothing is recalled.

This will occur when no chunk has activation above the retrieval threshold.

ACT-R Tutorial 1-May-12 Unit Five

 20

We will continue to look at productions from the fan model for now. In particular, this

production requests the retrieval of a chunk:

(P retrieve-from-person

 =imaginal>

 ISA comprehend-sentence

 arg1 =person

 arg2 =location

 ?retrieval>

 state free

 buffer empty

==>

 =imaginal>

 +retrieval>

 ISA comprehend-sentence

 arg1 =person

)

In this case an attempt is being made to retrieve a comprehend-sentence chunk with a particular

person (the value bound to =person) that had been studied. If =person were the chunk giant, this

retrieval request would be looking for a chunk of the form:

+retrieval>

 isa comprehend-sentence

 arg1 giant

As was shown above, there were three chunks which matched that request in the study set and

one of those will be retrieved.

However, let us consider the case where there had been no study sentences with the person giant

but there had been a sentence with the person titan in the location being probed with giant i.e.

there was a study sentence “The titan is in the bank” and the test sentence is now “The giant is in

the bank”. In this situation one might expect that some human participants might incorrectly

classify the probe sentence as one that was studied because of the similarity between the words

giant and titan. The current model however could not make such an error.

Errors of this type are what the partial matching mechanism is designed to address. When

partial matching is enabled (by setting the :mp parameter to a number) the similarity between the

chunks in the retrieval request and the chunks in the slots of the chunks in declarative memory

are taken into consideration. The chunk with the highest activation is still the one retrieved, but

with partial matching enabled that chunk might not have the exact slot values as specified in the

retrieval request.

Adding the partial matching component into the activation equation, we now have the activation

Ai of a chunk i defined fully as:

ACT-R Tutorial 1-May-12 Unit Five

 21

 li

lk j

jikjii MPSWBA

 Bi, Wkj, Sji, and have been discussed previously. The new term is the partial matching

component.

Specification elements l: The matching summation is computed over the slot values of the

retrieval specification.

Match Scale, P: This reflects the amount of weighting given to the similarity in slot l. This is a

constant across all slots and is set with the :mp parameter (it is also often referred to as the

mismatch penalty).

Match Similarities, Mli: The similarity between the value l in the retrieval specification and the

value in the corresponding slot of chunk i.

Similarity values, the Mli’s, can be set by the modeler along with the scale on which they are

defined. The scale range is set with a maximum similarity (set using the :ms parameter) and a

maximum difference (set using the :md parameter). By default, :ms is 0 and :md is -1.0. The

similarity between anything and itself is automatically set to the maximum similarity and by

default the similarity between any other pair of values is the maximum difference. However, it is

possible to choose some value between maximum similarity and maximum difference for items

that are deemed to be somewhat similar. Thus, unless one sets specific similarities or changes the

range of similarities, the match similarity will be 0 when the element in the chunk’s slot matches

the retrieval specification and –1.0 when it does not.

To demonstrate partial matching in use we will look at two example models.

5.6 Grouped Recall

To first of these models is the model called grouped. This is a demonstration model of a grouped

recall task which is based on a larger model of a complex recall experiment. As with the fan

model, the studied items are already specified in the model, so it does not model the encoding

and study of the items. In addition, the response times and error profiles of this model are not fit

to any data. This demonstration model is designed to show the mechanism of partial matching

and how it can lead to errors of commission and errors of omission. Because the model is not fit

to any data, and the mechanism being studied does not rely on any of the perceptual or motor

modules of ACT-R, they are not being used, and instead only a chunk in the goal buffer is used

to hold the task state and problem representation. This technique of using only the cognitive

system in ACT-R can be useful when modeling a task where the timing is not important or other

situations where accounting for a “real world” interaction is not necessary to accomplish the

objectives of the model. The experiment description text for this unit gives the details of how

ACT-R Tutorial 1-May-12 Unit Five

 22

that is accomplished in this model and in an alternate version of the fan model which also does

not use the perceptual and motor modules.

If you check the parameter settings for this model you will see that it has a value of .15 for the

transient noise s parameter and a retrieval threshold of -.5. Also, to simplify the demonstration,

the spreading activation described above is disabled by not providing a value for the :mas

parameter. This model is set up to recall a list of nine items which are encoded in groups of

three elements. The list that should be recalled is (123) (456) (789). To run the model, call the

run-grouped-recall function. That will print out the trace of the model doing the task and return a

list of the model’s responses. Because the :seed parameter is set in the model you will always get

the same run (you can remove the setting of the :seed parameter to produce different results if

you would like to explore the model further) and that will be of the model responding with:

("1" "2" "3" "4" "6" "5" "7" "8")

Where it mis-ordered the recall of the 5 and 6 and failed to recall the last item, 9.

5.6.1 Error of Commission

If one turns on the activation trace for this model you will again see the details of the activation

computations taking place. The following is from the activation trace of the error of commission

when the model recalls 6 in the second position of the second group instead of the correct item,

5. The critical comparison is between item5, which should be retrieved and item6, which is

instead retrieved:

Removing recently retrieved chunks:

ITEM4

ITEM3

ITEM2

ITEM1

Computing activation for chunk ITEM5

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing partial matching component

 comparing slot PARENT

 Requested: = GROUP2 Chunk's slot value: GROUP2

 similarity: 0.0

 effective similarity value is 0.0

 comparing slot POSITION

 Requested: = SECOND Chunk's slot value: SECOND

 similarity: 0.0

 effective similarity value is 0.0

Total similarity score 0.0

Adding transient noise -0.59634924

Adding permanent noise 0.0

Chunk ITEM5 has an activation of: -0.59634924

Chunk ITEM5 has the current best activation -0.59634924

Computing activation for chunk ITEM6

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing partial matching component

 comparing slot PARENT

ACT-R Tutorial 1-May-12 Unit Five

 23

 Requested: = GROUP2 Chunk's slot value: GROUP2

 similarity: 0.0

 effective similarity value is 0.0

 comparing slot POSITION

 Requested: = SECOND Chunk's slot value: THIRD

 similarity: -0.5

 effective similarity value is -0.5

Total similarity score -0.5

Adding transient noise 0.11740411

Adding permanent noise 0.0

Chunk ITEM6 has an activation of: -0.3825959

Chunk ITEM6 is now the current best with activation -0.3825959

...

Chunk ITEM6 with activation -0.3825959 is the best

In these examples the base-level activations, Bi, have their default value of 0, the match scale, P,

has the value 1, and the only noise value is the transient component with an s of 0.15. So the

calculations are really just a matter of adding up the match similarities, Mli and adding the

transient noise.

One thing to notice is that the :recently-retrieved request parameter is specified in the request:

 +retrieval>

 isa item

 parent =group

 position second

 :recently-retrieved nil

Thus, only those chunks without a declarative finst are attempted for the matching. :recently-

retrieved is not a slot of the chunk and thus does not undergo the partial matching calculation.

Looking at the matching of item5 above we see that it matches on both the parent and position

slots resulting in the addition of 0 to the base-level activation as a result of mismatch. It then

receives an addition of about -0.596 in noise which is then its final activation value.

Next comes the matching of item6. The parent slot matches the requested value of group2, but

the position slots do not match. The requested value is second but item6 has a value of third.

The similarity between second and third is set to -0.5 in the model, and that value is added to the

activation. Then a transient noise of .117 is added to the activation for a total activation of -.383.

This value is greater than the activation of item5 and thus because of random fluctuations item6

gets retrieved in error.

The similarities between the different positions are defined in the model using the set-similarities

command:

(set-similarities

 (first second -0.5)

 (second third -0.5)

 (first third -1))

ACT-R Tutorial 1-May-12 Unit Five

 24

Similarity values are symmetric, thus it is not necessary to also specify (second first -0.5). The

similarity between a chunk and itself has the value of maximum similarity by default, and thus

also does not need to be specified.

5.6.2 Error of Omission

Here is the portion of the detailed trace relevant to the failure to recall the ninth item:

Computing activation for chunk ITEM9

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing partial matching component

 comparing slot PARENT

 Requested: = GROUP3 Chunk's slot value: GROUP3

 similarity: 0.0

 effective similarity value is 0.0

 comparing slot POSITION

 Requested: = THIRD Chunk's slot value: THIRD

 similarity: 0.0

 effective similarity value is 0.0

Total similarity score 0.0

Adding transient noise -0.5353896

Adding permanent noise 0.0

Chunk ITEM9 has an activation of: -0.5353896

Chunk ITEM9 has the current best activation -0.5353896

No chunk above the retrieval threshold: -0.5

We see that item9 starts out with an activation of 0 because it matches perfectly with the request

and thus receives no penalty. However, it gets a transient noise of -.535 added to it which pushes

its activation below the retrieval threshold and thus it cannot be retrieved. Because it is the only

item chunk which is not marked as recently-retrieved it is the only one that can potentially be

retrieved. Thus there are no chunks above the threshold and a retrieval failure occurs.

5.7 Simple Addition

The other model for the unit which uses partial matching is fit to experimental data. The task is

an experiment performed by Siegler and Shrager on the relative frequencies of different

responses by 4 year olds to addition problems. The children were asked to recall the answers to

simple addition problems without counting on their fingers or otherwise computing the answer.

It seems likely that many of the kids did not know the answers to the larger problems that were

tested. So we will only focus on the addition table from 1+1 to 3+3, and here are the data they

reported:

 0 1 2 3 4 5 6 7 8 Other (includes no response)

 1+1 - .05 .86 - .02 - .02 - - .06

 1+2 - .04 .07 .75 .04 - .02 - - .09

 1+3 - .02 - .10 .75 .05 .01 .03 - .06

 2+2 .02 - .04 .05 .80 .04 - .05 - -

 2+3 - - .07 .09 .25 .45 .08 .01 .01 .06

 3+3 .04 - - .05 .21 .09 .48 - .02 .11

ACT-R Tutorial 1-May-12 Unit Five

 25

The siegler model contains the functions to perform a version of this task with a model. As with

the grouped model, there is no interface generated for the task, and thus it is not possible to run

yourself through the experiment. That should not be too much of a problem however because

one would guess that you would make very few errors if presented with such a task.

Also, like the fan model, this model does not rely on the goal buffer at all for tracking its

progress. For this task the numbers are presented aurally to the model and it speaks its answer if

it has one. The model builds up its representation of the problem in the imaginal buffer and

relies on the module states and buffer contents to determine what needs to be done next.

Most of the conditions and actions in the productions for this model are similar to those that have

been used in other tutorial models up until now. Thus, you should be able to understand and

follow the operation of the model without it being described in detail here. Instead, we will look

at the parameter settings used to match the data after covering the details of how to run the model

and looking at one production which uses an action not seen previously in the tutorial.

5.7.1 A direct request

This production in the siegler model has a retrieval buffer request which has not been discussed

previously in the tutorial:

(P harvest-answer

 =retrieval>

 ISA plus-fact

 sum =number

 =imaginal>

 isa plus-fact

 ==>

 =imaginal>

 sum =number

 +retrieval> =number

)

This production harvests the retrieval of a plus-fact chunk and copies the value from the sum slot

of that chunk into the sum slot of the imaginal buffer and also makes what is called a direct

request to the retrieval buffer to retrieve the chunk which is contained in that slot. That chunk

must be retrieved so that the value in its name slot can be used to speak the response.

A direct request can be made through any buffer by specifying a chunk or a variable bound to a

chunk as the only component of the request. The actual request which is sent to the module in

such a situation is constructed as if all of the slots and values of that chunk were specified

explicitly. Thus, if in the production above =number were bound to the chunk eight from the

model:

(eight ISA number value 8 name "eight")

ACT-R Tutorial 1-May-12 Unit Five

 26

Then that retrieval request would be equivalent to this:

 +retrieval>

 isa number

 value 8

 name "eight"

In fact, the module which receives the request will see it exactly like that – it has no access to the

name of the chunk which was used to make the direct request. Therefore, a direct request will be

handled by the module exactly the same way as a normal request.

In this case, since it is a retrieval request, it will undergo the same activation calculations and be

subject to partial matching just like any other retrieval request. Thus a direct request to the

retrieval buffer is not guaranteed to put that chunk into the buffer. In this model, the correct

chunk should always be retrieved because it will match on all of its slots and thus receive no

penalty to its activation while all the other number chunks will receive twice the maximum

difference penalty to their activation since they will mismatch on both slots and there are no

similarities set in the model between numbers as used in the value slot or the strings used in the

name slot.

On a related note, if one absolutely must place a specific chunk into a particular buffer there is a

way to do that within a production, but that is not a recommended practice, and thus is not going

to be covered in the tutorial.

5.7.2 Running the model

The function called test-fact will present 1 trial to the model and it requires the two numeric

addends as its parameters. Thus, to run a trial of 1+2 you would call (test-fact 1 2). The model

is reset before each trial of the task, and then run with those numbers being presented aurally. If

the model responds by speaking a number, then that spoken text will be returned by test-fact. If

the model does not respond then test-fact will return a value of nil.

The function called do-siegler-set takes no parameters and runs one trial of each problem

returning the list of responses. Because the model is reset before each trial, the order of

presentation does not matter and it is not randomized.

The function run-siegler takes one parameter which is the number of times to run do-siegler-set.

It will then tally all of the responses, report the fit to the data, and display the results in a table.

The following is the output from a run of the model showing the data fit for which we will be

describing the parameter settings:

ACT-R Tutorial 1-May-12 Unit Five

 27

> (run-siegler 500)

CORRELATION: 0.966

MEAN DEVIATION: 0.054

 0 1 2 3 4 5 6 7 8 Other

1+1 0.01 0.12 0.74 0.11 0.01 0.00 0.00 0.00 0.00 0.02

1+2 0.00 0.00 0.14 0.70 0.12 0.00 0.00 0.00 0.00 0.03

1+3 0.00 0.00 0.00 0.15 0.76 0.04 0.00 0.00 0.00 0.04

2+2 0.00 0.00 0.01 0.13 0.79 0.03 0.00 0.00 0.00 0.04

2+3 0.00 0.00 0.00 0.02 0.25 0.51 0.07 0.01 0.00 0.14

3+3 0.00 0.00 0.00 0.00 0.01 0.09 0.64 0.07 0.00 0.18

5.7.3 Parameters to be adjusted

To achieve that fit to the data we will be using partial matching and adjusting the base-level

activations of the plus-facts for the model. We are not going to use spreading activation for this

demonstration. However, if you would like to explore the effect it has on the model feel free to

enable it and experiment with adjusting the source spread from the imaginal buffer which is

holding the contextual information in this task.

The specific parameters that we will need to adjust for the model are those related to activation

in general (the retrieval threshold, :rt, and the activation noise, :ans) those related to partial

matching (the similarities among the number chunks used as the addends of the plus-facts and

the match scale value, :mp) and the base-level activation values of the chunks.

That is potentially a lot of free parameters in the model. Treating them that way one could likely

produce an extremely strong fit to the reported data. However, doing that is not very practical

nor does it result in a model that is of much use for demonstrating anything other than the ability

to fit 60 data points using more than 60 parameters.

In the following sections we will describe the effects that the particular parameters have on the

model’s performance and outline an approach which can be taken to arrive at the parameter

settings in a model.

5.7.4 Initial model

The first thing to do for the model is make sure that it can do the task. In this case that is hear

the numbers, attempt to retrieve an addition fact, and then speak the result. To do that, we will

start without enabling the subsymbolic components of the system. Making sure the model works

right with basic symbolic information is a good start for modeling complex tasks because once

the subsymbolic components are enabled and more sources of randomness or indeterminate

behavior are introduced it can be very difficult to find potential errors in the productions or basic

logic of the model.

The assumptions for the model are that the children know the numbers from zero through nine

and that they have encountered the addition facts for problems with addends from zero to five.

Thus these will be the declarative memory elements with which the model will start. Along with

ACT-R Tutorial 1-May-12 Unit Five

 28

that, we are assuming that the children are not going to use any complex problem solving to try

to remember the answers and that if there is a failure to remember a fact after one try the model

will just give-up and answer that it does not know. For a task of this nature where we are

modeling the aggregate data, using a single idealized strategy for the model is often a reasonable

approach, and has been how all the other models seen so far in the tutorial operate. In other

circumstances, particularly when individual participant data is being model, the specific strategy

used to perform the task may be important, and in those cases it may be necessary to include

different strategies into the model to account for the data.

With the model working correctly in a purely symbolic fashion we should see it answering

correctly on every trial and here are the results of the model in that case providing the starting

point for the adjustments to be made:

> (run-siegler 100)

CORRELATION: 0.943

MEAN DEVIATION: 0.127

 0 1 2 3 4 5 6 7 8 Other

1+1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1+2 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1+3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

2+2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

2+3 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

3+3 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

5.7.5 Making errors

Now that the model performs perfectly we need to consider how we want it to model the errors.

For this task we have chosen to use partial matching to do that. Specifically, we want the model

to retrieve an incorrect plus-fact as it does the task and also to sometimes fail to retrieve a plus-

fact (an important source of the other results for the model). What we do not want it to do is

retrieve an incorrect number chunk or fail to retrieve one while encoding the audio input or

producing the vocal output. The reason for that is because we are assuming that the children

know their numbers and thus do not produce errors because they are failing to hear or speak

correctly. That is important because we are not just looking to have the model fit the data but to

actually have it do so in a manner which seems plausible for the task.

To make those errors through partial matching will require that the model occasionally retrieve

the wrong chunk for a request which looks like this:

 +retrieval>

 ISA plus-fact

 addend1 =val1

 addend2 =val2

where the =val1 and =val2 variables are bound to number chunks, for example one and three.

Thus, the items which need to be similar are those number chunks which are the cues used in the

retrieval. So, that is where we will start in setting the parameters.

ACT-R Tutorial 1-May-12 Unit Five

 29

5.7.6 Setting similarities

The similarity settings between the number chunks will affect the distribution of incorrect

retrievals. While this looks like a lot of free parameters to be fit, in practice that is just not

reasonable. For a situation like this, where the chunks represent numbers, it is better to set the

similarity between two numbers based on the numerical difference between them using a single

formula to specify all of the similarities. There is a lot of research into how people rate the

similarity of numbers and there are many equations which have been proposed to describe it.

For this task, we are going to use a linear function of the difference between the numbers.

Also, to keep things simple we will use the default range of similarity values for the model,

which are from 0.0 for most similar to -1.0 for most dissimilar. Since we are working with

numbers from 0-9 an obvious choice for setting them seems to be:

babaSimilarity *1.0),(

To set those similarities, we need to use the set-similarities command. Because the similarities

are symmetric we only need to set each pair of numbers once and we do not need to set the

similarity between a chunk and itself because that defaults to the most similar value. We also

note that since the model only has chunks for encoding the plus-facts with addends from 0-5 we

only need to set the similarities for the chunks which are relevant to the task. Thus, here are the

initial similarity values set for the model:

(Set-similarities

 (zero one -0.1) (one two -0.1) (two three -0.1)(three four -0.1)(four five -0.1)

 (zero two -0.2) (one three -0.2)(two four -0.2) (three five -0.2)

 (zero three -0.3)(one four -0.3) (two five -0.3)

 (zero four -0.4) (one five -0.4)

 (zero five -0.5))

In addition to the similarities, we will also need to set the match scale parameter for the model.

Adjusting the match scale will determine how much the similarity values affect the activation of

the chunks since it is used to multiply the similarity values. Because we have chosen a linear

scale for our similarity values we will actually be able to just use the match scale parameter to

handle all of our adjustments instead of needing to adjust the available range or the parameter we

chose in our similarity equation.

The similarity value and the match scale are going to determine how close the activations

between the correct and incorrect plus-fact chunks are. How large that needs to be to create the

effect we want is going to depend on other settings in the model. Thus, there is not really a good

guideline for determining where it should be initially, but from experience we know that it is

often easier to adjust the parameters later if we start with values that allow us to see the effect

each has on the results. Thus we want to make sure that we pick a value here which ensures that

the similarity will make a difference in the activation values. Since the default base-level

ACT-R Tutorial 1-May-12 Unit Five

 30

activation of chunks is 0.0 when the learning is off we are going to choose a large initial P value,

like 5, to make sure that the activations will differ noticeably.

With just these settings however, the model will still not make any errors because the correct

chunk will always have the highest activation and thus be retrieved. To actually get some errors

we will need to also add some noise to the activation values.

5.7.7 Activation noise

In the previous unit, we saw how the activation noise affected the probability that a chunk would

be above the retrieval threshold, and in this unit that is still true. In addition, since now there are

multiple chunks which could all be above the threshold it is also going to affect the frequency of

retrieving the correct chunk among the incorrect alternatives. The more noise there is the less

likely it is that the correct chunk will have the highest activation.

As with the :mp value, choosing the initial value for the noise is not obvious because its effect is

determined by other settings in the model. For this parameter however, we do have some general

guidelines to work with based on past experience. For many models that have been created in

the past an activation noise value in the range of 0.0-1.0 has been a good setting and for most of

those the value tends to fall somewhere between 0.2 and 0.5. So, based on that, we will start this

model off with a value of .5, as was used for the models of the previous unit, and then adjust

things from there as needed later.

Now, given these settings, :ans .5 and :mp 5 with the similarities set as shown above, we can run

the model and see what happens. Here is what we see if we just run it to collect the data:

> (run-siegler 100)

CORRELATION: -0.030

MEAN DEVIATION: 0.336

 0 1 2 3 4 5 6 7 8 Other

1+1 0.00 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.91

1+2 0.00 0.01 0.03 0.04 0.02 0.01 0.00 0.00 0.00 0.88

1+3 0.00 0.00 0.02 0.02 0.04 0.03 0.01 0.00 0.00 0.88

2+2 0.00 0.00 0.02 0.02 0.05 0.03 0.02 0.01 0.00 0.85

2+3 0.00 0.00 0.00 0.03 0.03 0.02 0.03 0.02 0.00 0.87

3+3 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.01 0.02 0.88

The model is almost never correct and most of the errors are of the type other which means that

it probably did not respond. The important thing to do next is to understand why that is

happening. One should not just start adjusting the parameters to try to improve the fit without

understanding why the model is performing in that way.

5.7.8 Retrieval threshold and base-levels

Running the model on a few single trials and stepping through its operations shows that the

problem is happening because the model is failing to retrieve chunks during all the retrieval

ACT-R Tutorial 1-May-12 Unit Five

 31

requests including the initial encoding of the numbers. We want the model to sometimes fail on

the plus-fact chunks, but we do not want it to be failing during the encoding phase.

So, there are two steps which we will take at this point. The first is to adjust the retrieval

threshold so that we eliminate most, if not all, of the retrieval failures. This will allow us to work

on setting the other parameters to match the data with the model answering the questions. Then

we can come back to the retrieval threshold later and increase it to introduce more of the non-

answer responses into the model. Thus, for now we will set the retrieval threshold to a value of

-10.0 to make it very unlikely that any chunk will have an activation below that value.

The other thing we will do at this time is consider how to keep the number chunks from failing

once we bring the retrieval threshold back up to a reasonable value. The easiest way to handle

that is to increase the base-level activation of the number chunks so that the noise will be

unlikely to ever take them below the retrieval threshold. The justification for doing so in the

model is that it is assumed the children have a strong knowledge of the numbers and do not

confuse or forget them and thus we need to provide the model with a comparable ability.

To do that we will use the set-base-levels command which works similar to the set-all-base-

levels command that was used in the last unit. The difference is that for set-base-levels we can

specify specific chunks instead of applying the change to all of them. Again, this seems like it is

a lot of free parameters, but since we are not measuring the response time in this model all that

matters is that the chunks have a value large enough to not fail to be retrieved – differences

among them will not affect the error rate results as long as they are all being retrieved. We will

start by assigning them a value of 10 which is significantly larger than the retrieval threshold we

have now of -10 which should result in no failures for retrieving number chunks. When we

increase the retrieval threshold later we may need to adjust this value, but for now we will add

these settings to the model:

(set-base-levels

 (zero 10) (one 10) (two 10) (three 10) (four 10) (five 10)

 (six 10) (seven 10)(eight 10) (nine 10))

Unlike the similarities where we only needed to set the values for the numbers from 0-5 based on

the task, here we need to set all of the numbers from 0-9 since any of those values is a potential

sum of the plus-facts in the model’s declarative memory which may need to be retrieved.

After making those additions to the model running it produces this output:

> (run-siegler 100)

CORRELATION: 0.708

MEAN DEVIATION: 0.152

 0 1 2 3 4 5 6 7 8 Other

1+1 0.03 0.19 0.34 0.20 0.12 0.07 0.02 0.02 0.00 0.00

1+2 0.01 0.07 0.16 0.29 0.22 0.16 0.06 0.02 0.01 0.00

1+3 0.01 0.02 0.06 0.21 0.32 0.17 0.10 0.05 0.03 0.01

2+2 0.00 0.03 0.10 0.19 0.27 0.23 0.11 0.04 0.01 0.00

2+3 0.00 0.01 0.05 0.09 0.22 0.31 0.21 0.10 0.01 0.01

3+3 0.00 0.00 0.02 0.06 0.10 0.23 0.28 0.18 0.10 0.04

ACT-R Tutorial 1-May-12 Unit Five

 32

That shows a better fit to the data than the last one, though still not as good as we want, or in fact

as good as it was when perfect. Looking at the trace of a few individual runs seems to indicate

that the model is working as we would expect – the errors are only due to retrieving the wrong

plus-fact because of partial matching.

5.7.9 Adjusting the parameters

The next step to take depends on what the objectives of the modeling task are – what are you

trying to accomplish with the model and what do you consider as a sufficient fit to the data. If

that fit to the data is good enough, then as a next step you would then want to start bringing the

retrieval threshold up to introduce some of the other responses (failure to respond) and hopefully

improve things a little more. In this case however we are not going to consider that sufficient

and will first investigate other settings for the :ans and :mp parameters before moving on to

adjusting the retrieval threshold.

To do that we are going to search across those parameters for values which improve the model’s

fit to the data. When searching for parameters in a model there are a lot of approaches which can

be taken. In this case, we are going to keep it simple and try manually adjusting the parameters

and running the model to see if we can find some better values. When the number of parameters

to search is small, the model runs fairly quickly, and one is not looking to precisely model every

point this method can work reasonably well. For other tasks, which require longer runs or which

have many more parameters to adjust other means may be required. That can involve writing

some Lisp code to adjust the parameters and perform a more thorough search or going as far as

creating an abstraction of the model based on the underlying equations and using a tool like

MATLAB or Mathematica to solve those for the best values.

The approach that we use when searching by hand is to search on only one parameter at a time.

Pick one parameter and then adjust that to get a better fit. Then, fix that value and pick another

parameter to adjust. Do that until each of the parameters has been adjusted. Often, one pass

through each of the parameters will result in a much better fit to the data, but sometimes it may

require multiple passes to arrive at the performance level you desire (assuming of course that the

model is capable of producing such a fit through manipulating the parameters).

Sometimes it is also helpful to work with only a subset of the parameters if you have an idea of

the effects which they will have on the data. For example, in this task we know that the retrieval

threshold will primarily determine the frequency with which the model gives up. Thus we are

going to hold back on trying to fit that parameter until we have adjusted the others to better fit

the majority of the data for the trials where it produces an answer.

Since we are starting with a noise value that was based on other tasks and our match scale value

was chosen somewhat arbitrarily we will start searching across the match scale parameter.

Keeping the noise value at .5 we found that a value of 16 for the match scale parameter seems to

be our best fit:

CORRELATION: 0.942

MEAN DEVIATION: 0.074

ACT-R Tutorial 1-May-12 Unit Five

 33

 0 1 2 3 4 5 6 7 8 Other

1+1 0.01 0.13 0.75 0.10 0.01 0.00 0.00 0.00 0.00 0.00

1+2 0.00 0.00 0.12 0.74 0.13 0.01 0.00 0.00 0.00 0.00

1+3 0.00 0.00 0.01 0.13 0.75 0.10 0.01 0.00 0.00 0.00

2+2 0.00 0.00 0.01 0.11 0.75 0.12 0.01 0.00 0.00 0.00

2+3 0.00 0.00 0.00 0.00 0.14 0.73 0.13 0.00 0.00 0.00

3+3 0.00 0.00 0.00 0.00 0.01 0.13 0.76 0.10 0.01 0.00

Then, fixing the match scale parameter at 16 and adjusting the noise value we do not seem to

find a value which does any better than the starting value of .5. So, we will adjust the retrieval

threshold to introduce more of the other responses and hopefully improve the fit some more.

Searching there finds that a value of .7 improves the fit to this:

CORRELATION: 0.949

MEAN DEVIATION: 0.065

 0 1 2 3 4 5 6 7 8 Other

1+1 0.00 0.07 0.74 0.09 0.01 0.00 0.00 0.00 0.00 0.09

1+2 0.00 0.00 0.10 0.70 0.08 0.00 0.00 0.00 0.00 0.11

1+3 0.00 0.00 0.00 0.10 0.71 0.09 0.01 0.00 0.00 0.08

2+2 0.00 0.00 0.01 0.12 0.66 0.12 0.00 0.00 0.00 0.08

2+3 0.00 0.00 0.00 0.00 0.13 0.68 0.09 0.00 0.00 0.10

3+3 0.00 0.00 0.00 0.00 0.01 0.08 0.70 0.08 0.00 0.13

One important thing to do at this point is to make sure that the model is still doing the task as we

expect – that changing the parameters has not introduced some problems, like failing to retrieve

the number chunks. For the current model, looking at a couple of single trial runs in detail shows

that things are still working as expected. So, at this point we could go back and perform another

pass through all the parameters trying to find a better fit, but instead we are going to stop and

look at where our model seems to be deviating from the experimental data before trying to just

find better parameters.

5.7.10 Adjusting the model

It seems that one trend in the data which we are missing is that the children seem to respond

correctly more often to the smaller problems and that when they respond incorrectly the answers

are more often smaller than the correct answer. There seems to be a bias for the smaller answers.

This agrees with other research which finds that addition facts with smaller addends are

encountered more frequently in the world.

Accounting for that component of the data is going to require making some adjustment to the

model other than just modifying the parameters which we have. The research which finds that

the smaller problems occur more frequently suggests a possible approach to take. The base-level

activation of a chunk represents its history of use, and thus by increasing the base-level

activation of the smaller plus-fact chunks we can simulate that increase in frequency and increase

the probability that the model will retrieve them. This should help improve the data fit in a

plausible manner.

Like the similarities, this is another instance where it looks like there are a lot of free parameters

that could be used to fit the data, but again a principled approach is advised. In this case we are

ACT-R Tutorial 1-May-12 Unit Five

 34

going to increase the base-level activation of all the small plus facts (which we have chosen to be

those with a sum less than or equal to four), and we are going to give all of those chunks the

same increase to their base-level activation. The default base-level activation for the plus-facts is

0. So we are going to set those chunks to have a value above that by using the set-base-levels

command as we have done with the number chunks with something like this:

(set-base-levels

 (f00 .1)(f01 .1)(f02 .1)(f03 .1)(f04 .1)

 (f10 .1)(f11 .1)(f12 .1)(f13 .1)

 (f20 .1)(f21 .1)(f22 .1)

 (f30 .1)(f31 .1)

 (f40 .1))

Using the values for the other parameters found previously we will search for a base-level value

which improves the data fit and what we find is that a value of .5 seems to improve things to this:

CORRELATION: 0.962

MEAN DEVIATION: 0.059

 0 1 2 3 4 5 6 7 8 Other

1+1 0.00 0.10 0.77 0.10 0.00 0.00 0.00 0.00 0.00 0.02

1+2 0.00 0.00 0.12 0.75 0.11 0.00 0.00 0.00 0.00 0.01

1+3 0.00 0.00 0.00 0.11 0.82 0.04 0.00 0.00 0.00 0.03

2+2 0.00 0.00 0.00 0.14 0.77 0.05 0.00 0.00 0.00 0.03

2+3 0.00 0.00 0.00 0.02 0.17 0.67 0.09 0.00 0.00 0.05

3+3 0.00 0.00 0.00 0.00 0.01 0.11 0.64 0.13 0.00 0.11

Given that, we will make one more pass over all the parameters (noise, match scale, retrieval

threshold, and small plus-fact base-level offset) to find the final set of parameter values which

are set in the given model and produce this fit to the data:

CORRELATION: 0.966

MEAN DEVIATION: 0.054

 0 1 2 3 4 5 6 7 8 Other

1+1 0.01 0.12 0.74 0.11 0.01 0.00 0.00 0.00 0.00 0.02

1+2 0.00 0.00 0.14 0.70 0.12 0.00 0.00 0.00 0.00 0.03

1+3 0.00 0.00 0.00 0.15 0.76 0.04 0.00 0.00 0.00 0.04

2+2 0.00 0.00 0.01 0.13 0.79 0.03 0.00 0.00 0.00 0.04

2+3 0.00 0.00 0.00 0.02 0.25 0.51 0.07 0.01 0.00 0.14

3+3 0.00 0.00 0.00 0.00 0.01 0.09 0.64 0.07 0.00 0.18

We could continue to search over the parameters or attempt other changes, like modifying the

similarities used to something other than linear, but these results are sufficient for this

demonstration. You are free to explore other changes to the parameters or the model if you are

interested.

5.8 Learning from experience

The task for this assignment will be to create a model which can learn to perform a task better

based on the experience it gains while doing the task. One way to do that is using declarative

memory to retrieve a past experience which can be used to decide on an action to take. The

ACT-R Tutorial 1-May-12 Unit Five

 35

complication however is that in many situations one may not have experienced exactly the same

situation in the past. Thus, one will need to retrieve a similar experience to guide the current

action, and the partial matching mechanism provides a model with a way to do that.

Instead of writing a model to fit data from an experiment in this unit we will be writing a model

which can perform a more general task. Specifically, the model must learn to play a game better.

The model will be assumed to know the rules of the game, but will not have any initial

experience with the game thus must learn the best actions to take as it plays. In the following

sections we will introduce the rules of the game, how the model interacts with the game, a

description of the starting model, what is expected of your model, and how to use the provided

code to run the game.

5.8.1 1-hit Blackjack

The game we will be playing is a simplified version of the casino game Blackjack or Twenty-

one. In our variant there are only two players and they each have only one decision to make.

The game is played with 2 decks of cards, one for each player, consisting of cards numbered 1-

10. The number of cards in the decks and the distribution of the cards in the decks are not

known to the players in advance. A game will consist of several hands. On each hand, the

objective of the game is to collect cards whose sum is less than or equal to 21 and greater than

the sum of the opponent’s cards. When summing the values of the cards a 1 card may be

counted as 11 if that sum is not greater than 21, otherwise it must be considered as only 1. At the

start of a hand each player is dealt two cards. One of the cards is face up and the other is face

down. A player can see both of his cards’ values but only the value of the face up card of the

opponent. Each player then decides if he would like one additional card or not. Choosing to

take an additional card is referred to as a “hit” and choosing to not take a card is referred to as a

“stay”. This choice is made without knowing your opponent’s choice – each player makes the

choice in secret. An additional constraint is that the players must act quickly. The choice must

be made within a preset time limit to prevent excessive calculation or contemplation of the

actions and to keep the game moving. If a player hits then he is given one additional card from

his deck and his final score is the sum of the three cards (with a 1 counted as 11 if that does not

exceed 21). If a player stays then his score is the sum of the two starting cards (with a 1 counted

as 11). Once any extra cards have been given both players show all of the cards in their hands

and the outcome is determined. If a player’s total is greater than 21 then he has lost. That is

referred to as “busting”. It is possible for both players to bust in the same hand. If only one

player busts then the player who did not bust wins the hand. If neither player busts then the

player with the greater total wins the hand. If the players have the same total then that is

considered a loss for both players. Thus to win a hand a player must have a total less than or

equal to 21 and either the opponent’s total is greater than 21 or the opponent’s total is less than

the player’s total. After a hand is over the cards are returned to the deck, it is reshuffled and

another hand begins. The objective of the game is to win as many hands as possible.

There are many unknown factors in this game making it difficult to know what the optimal

strategy is at the start. However, over the course of many hands one should be able to improve

ACT-R Tutorial 1-May-12 Unit Five

 36

their winnings as they acquire more information about the current game. One complication is

that the opponent may also be adapting as the game goes on. To simplify things for this

assignment we will assume that the model’s opponent always plays a fixed strategy, but that that

strategy is not known to the model in advance. Thus, the model will start out without knowing

the specifics of the game it is playing, but should still be able to learn and improve over time.

5.8.2 General modeling task description

To keep the focus of this modeling task on the learning aspect we have abstracted away from a

real interface to the game in much the same way as the fan and grouped model abstracted away

from a simulation of the complete experimental task. Thus the model will not have to use the

visual or aural modules for acquiring the game state. Similarly, the model will also not have to

compute the scores or determine the specific outcomes of each hand. The model will be

provided with all of the available game state information in a chunk in the goal buffer at two

points in the hand and will only need to make one of two key presses to signal its action.

At the start of the hand the model will be told its two starting cards, the sum of those cards, and

the value of the opponent’s face up card. The model then must decide whether to hit or stay.

The choice is made by pressing either the H key to hit or the S key to stay. The model has

exactly 10 seconds in which to make this choice and if it does not press either key within that

time it is considered as staying for the hand. After 10 seconds have passed, the model’s goal

chunk will be modified to reflect the actions of both players and the outcome of the game. The

model will then have all of its own card values, all of the opponent’s card’s values, the final

totals for its hand and the opponent’s hand, as well as the outcome for each player. The model

must then use that information to determine what, if anything, it can or should learn from the

trial before the next hand begins. The time between the feedback and the next hand will also be

10 seconds.

5.8.3 Goal chunk specifics

Here is the chunk-type definition of the chunk that will be placed into the goal buffer:

(chunk-type game-state mc1 mc2 mc3 mstart mtot mresult

 oc1 oc2 oc3 ostart otot oresult state)

The slots of the chunk in the goal buffer will be set by the game playing code for the model as

follows:

- At the start of a new hand

o state slot will be the value start

o mc1 slot will hold the value of the model’s first card

 a number from 1-10

o mc2 slot will hold the value of the model’s second card

 a number from 1-10

ACT-R Tutorial 1-May-12 Unit Five

 37

o mstart slot will hold the score of the model’s first two cards

 a number from 4-21 because a 1 will be counted as an 11 if there is one

o oc1 slot will hold the value of the opponent’s face up card

 a number from 1-10

o ostart slot will hold the opponent’s starting score

 a number from 2-11 because a 1 will count as 11

o all other slots will be set to nil

- After the players have made their decisions for the hand

o state slot will be set to the value results

o mc1, mc2, mstart, oc1, and ostart slots will be set to the same values as at the

start of the hand described above

o if the model hits then the mc3 slot will be the value of the model’s third card

 a number from 1-10

o if the model stays the mc3 slot will be the value nil

o mtot slot will hold the final total for the model’s two or three card hand

 a number from 4-30

o mresult slot will be the model’s result for the hand

 one of win, lose, or bust

o oc2 will be the opponent’s second card

 a number from 1-10

o oc3
 if the opponent hits the slot will be the value of the opponent’s third card

 a number from 1-10

 if the opponent stays the value of the slot will be nil

o otot slot will be the final total for the opponent’s two or three card hand

 a number from 4-30

o oresult slot will hold the opponent’s result for the hand

 one of win, lose, or bust

For testing, the model will be played through a series of 100 hands and its percentage of winning

in each group of 5 hands will be computed. For a fixed opponent’s strategy and particular

distribution of cards in the decks there is an optimal strategy and it may be possible to create

rules which play a “perfect” game under those circumstances. However, since the model will not

know that information in advance it will have to learn to play better, and the objective is to have

a model which can improve its performance over time for a variety of different opponents and

different possible decks of cards. Of course, since the cards received are random for any given

sequence of 100 hands the model’s performance will vary and even a perfect strategy could lose

all of them. Thus to determine the effectiveness of the model it will play several games of 100

hands and the results will be averaged to determine how well it is learning.

5.8.4 Starting model

The code for playing the game and a starting model for this task are in the 1hit-blackjack file

with the unit 5 materials. The given model uses a very simple approach to learn to play the

ACT-R Tutorial 1-May-12 Unit Five

 38

game. It attempts to retrieve a chunk with information learned from previous hands that is

relevant to the current hand. If it can retrieve such a chunk it performs the action that it contains,

and if not it chooses to stay. Then, based on the feedback from the hand the model creates a new

chunk which holds the learned information for this hand to use on future hands. As described

below however, the feedback used by this model is not very helpful in producing a useful chunk

for learning about the game – it learns a strategy of always hitting. Here are the productions

from the starting model:

 (p start

 =goal>

 isa game-state

 state start

 MC1 =c

 ==>

 =goal>

 state retrieving

 +retrieval>

 isa learned-info

 MC1 =c

)

 (p cant-remember-game

 =goal>

 isa game-state

 state retrieving

 ?retrieval>

 state error

 ?manual>

 state free

 ==>

 =goal>

 state done

 +imaginal>

 isa learned-info

 action "s"

 +manual>

 isa press-key

 key "s"

)

 (p remember-game

 =goal>

 isa game-state

 state retrieving

 =retrieval>

ACT-R Tutorial 1-May-12 Unit Five

 39

 isa learned-info

 action =act

 ==>

 =goal>

 state done

 +imaginal>

 isa learned-info

 action =act

 +manual>

 isa press-key

 key =act

 =retrieval>

 MC1 nil

 action nil

 -retrieval>

)

 (p results-should-hit

 =goal>

 isa game-state

 state results

 mresult =outcome

 MC1 =c

 =imaginal>

 isa learned-info

 ==>

 !output! (I =outcome)

 =imaginal>

 MC1 =c

 action "h"

 -imaginal>

)

 (p results-should-stay

 =goal>

 isa game-state

 state results

 mresult =outcome

 MC1 =c

 =imaginal>

 isa learned-info

 ==>

 !output! (I =outcome)

ACT-R Tutorial 1-May-12 Unit Five

 40

 =imaginal>

 MC1 =c

 action "s"

 -imaginal>

)

The operation of most of those productions should be fairly straight forward, but there is

something different in the actions of the remember-game production which is worth noting. On

its RHS we see these actions:

 =retrieval>

 MC1 nil

 action nil

 -retrieval>

Before clearing the chunk from the retrieval buffer all of its slots are explicitly set to nil. That is

done to prevent it from merging back into declarative memory and strengthening the chunk

which was retrieved. The reason for that is because the chunk which was retrieved may not be

the best action to take in the current situation either because it was retrieved due to noise or

because the model does not yet have enough experience to accurately determine the best move.

So, the model erases that information and waits for the feedback on the hand before creating a

new chunk to represent the action to take on this hand. If it did not do that, then it could

continue to strengthen and retrieve a particular “bad” chunk just because it was created and

retrieved often early on in its learning. There are other ways in which that can be managed, but

this simple mechanism is sufficient for the task being modeled here.

Because there are many more potential starting configurations than hands which will be played

this model uses the partial matching mechanism to allow it to retrieve a similar chunk when a

chunk which matches specifically is not available. The given code provides the model with

similarity values between numbers by using a Lisp function. This is done through the use of a

“hook function” parameter in the model. A hook function parameter allows the modeler to

override or modify an internal computation through Lisp code and there are several which can be

specified for a model. In this case we are setting the :sim-hook parameter to compute the

similarity values for the model. This is being done because the set-similarities command only

allows the modeler to set the similarity value between chunks, but here we are using numbers to

represent the card values and hand totals. Even if we had used chunks to represent the card

values however it would still have been easier to use the hook function to compute the similarity

values instead of having to explicitly specify all of the possible values for the similarities

between the numbers which can occur while playing the game – essentially all the possible pairs

for numbers from 1 to 30.

The equation that is used to set the similarities between the card values is:

ACT-R Tutorial 1-May-12 Unit Five

 41

),max(

)(
),(

ba

baabs
baSimilarity

This ratio has two features which should work well for this task and it corresponds to results

found in the psychology literature. First, the similarity is relative to the difference between the

numbers so that the closer the numbers are to each other the more similar they are. Thus, 1 and 2

are more similar than 1 and 3. The other feature is that larger numbers are more similar than

smaller numbers for a given difference. Therefore 21 and 22 are more similar than 1 and 2 are.

There are several other parameters which are also set in the starting model. Those are divided

into two sets. The first set is those which control how the model is configured (which learning

mechanisms are enabled and how the system operates), and the second set is those which control

the parameters of the mechanisms used in the model. This is the first set of parameters:

(sgp :esc t :bll .5 :ol t :sim-hook number-sims :er t :ncnar nil :lf 0 :rt -60)

It enables the subsymbolic components of ACT-R, turns on the base-level learning for

declarative memory with a decay of .5 (the recommended value), specifies that the optimized

learning equation be used for the base-level calculation, specifies the function which will

compute the similarity values, enables randomness to break ties for activations and during

conflict resolution, and specifies that chunk names should not be normalized (changed) as the

system runs. Those settings should also be used in the assignment model which you write. It

also sets the latency factor to 0 so that all retrievals complete immediately and sets the retrieval

threshold to -60 so that it should always be able to retrieve a chunk. Those last two are

simplifications to avoid having to tune the model’s chunk activation values to achieve the

appropriate timing and should also be used in your solution.

The other set of parameters in the starting model specifies the things which you may want to

modify:

(sgp :v nil :ans .2 :mp 10.0)

In addition to the :v flag to control the trace it sets the activation noise and the mismatch penalty

for partial matching. These values worked well for the solution model, but may need to be

adjusted for your model.

5.8.5 The Assignment

The assignment for the task is to create a model which can learn to play better in a 100 hand

game without knowing the details of the opponent or the distribution of cards in the deck in

advance. Thus, it must learn based on the information it acquires as it plays the game.

Although the specific information learned by the starting model does not do a good job of

learning to play better it does represent a reasonable approach for a model of this game. The

ACT-R Tutorial 1-May-12 Unit Five

 42

recommended way to approach this assignment is to modify that starting model so that it learns

to play better. You are not required to use that model, but your solution must use partial

matching and it must be able to learn verses a variety of opponents and with different

distributions of cards in the deck – that is it should not incorporate any information specific to

the strategy of the default opponent provided or the default distribution of cards in the deck.

If you choose to use the starting model, then the thing that you will need to change about it to

make it better learn to play the game is how it interprets the feedback so that it creates chunks

which have appropriate information about the actions it should take based on the information that

is available.

Specifically, you will need to do the following things:

- Change the learned-info chunk-type to have slots which hold the information needed.

- Change the start production to retrieve a learned-info chunk given the information you

have determined is appropriate.

- Change the results-should-hit and results-should-stay productions to better test the

information available at the end of the game to decide on a good action to learn. This

may require adding additional productions as well, or setting the productions’ utilities to

favor some actions over others.

With an appropriate choice of initial information and feedback that should be sufficient to

produce a model which can learn against a variety of opponents. There are other things which

you could do that may improve that model’s learning, and some of those are listed below. It is

strongly recommended that you get a simple model which can learn to play the game using the

basic operations described above before attempting to improve it with any of these or other

mechanisms:

- Change the noise level and the mismatch penalty parameters to attempt to adjust the

learning rate or flexibility of the model.

- Add more productions to analyze the starting position either before or after retrieving an

appropriate chunk.

- Provide a strategy other than always staying when no relevant information can be

retrieved.

5.8.6 Running the Game and Model

There are three functions that can be used to run a model through the game against an opponent

who is controlled by Lisp code: play-hands, run-blocks, and show-learning. Each is described

along with examples below.

ACT-R Tutorial 1-May-12 Unit Five

 43

play-hands

Play-hands takes one required parameter which is the number of hands to play and an optional

parameter which controls whether it prints out the details of each of those hands. It returns a list

of four items. The items in the list are the counts of the model’s wins, the opponent’s wins, the

times when both players bust, and the times when they are tied.

Here is an example of running it without the optional parameter:

> (play-hands 4)

(1 3 0 0)

Here is an example of running it with the optional parameter to show the details of the hands

played:

> (play-hands 5 t)

Model: 9 6 -> 15 (LOSE) Opponent: 6 8 4 -> 18 (WIN)

Model: 7 1 6 -> 14 (LOSE) Opponent: 7 10 -> 17 (WIN)

Model: 4 10 7 -> 21 (WIN) Opponent: 10 2 4 -> 16 (LOSE)

Model: 8 10 10 -> 28 (BUST) Opponent: 8 4 10 -> 22 (BUST)

Model: 1 10 10 -> 21 (WIN) Opponent: 10 4 9 -> 23 (BUST)

(2 2 1 0)

An important thing to note is that play-hands does not reset the model. Thus it will retain any

information which it has learned from one call to the next, and if you want to start the model

over you will have to reset it explicitly.

run-blocks

Run-blocks takes two parameters which are the number of blocks to run and the number of hands

to run in each block. It runs the model through those hands and returns the list of results per

block where each block is represented by a list as returned by play-hands. Here is an example

with running two blocks of 5 hands each:

> (run-blocks 2 5)

((1 3 1 0) (2 2 1 0))

Note that like play-hands the run-blocks function also does not reset the model.

show-learning

Show-learning is used to run a model through multiple 100 hand games for analysis. One game

is equivalent to using run-blocks for 20 blocks of 5 hands. It takes one required parameter which

is the number of games to run the model through and then average over. It also takes an optional

parameter to indicate whether or not a graph of the results should be drawn.

The model is run through the specified number of games and is reset before running each game.

The results are collected and averaged as 4 blocks of 25 hands and as 20 blocks of 5 hands. It

returns a list of two lists. The first list is the percentage of wins in the 4 blocks of 25. This list

ACT-R Tutorial 1-May-12 Unit Five

 44

should give a quick indication of whether or not the model is improving over the course of the

game. The second list is the percentage of wins considering 20 blocks of 5 hands to provide a

more detailed description of the learning. If the optional parameter is not given then an

“experiment window” will be opened and the detailed percentage data will be displayed in a

graph. Here is an example call and resulting graph of a run of the example model:

> (show-learning 200)

 ((0.3096 0.3012 0.30440003 0.296) (0.308 0.31 0.306 0.326 0.298 0.29 0.302 0.298

0.288 0.328 0.318 0.316 0.28 0.314 0.294 0.294 0.286 0.312 0.286 0.302))

 If you do not want to see the graph then specifying the second parameter as nil will suppress it:

> (show-learning 200 nil)

 ((0.3096 0.3012 0.30440003 0.296) (0.308 0.31 0.306 0.326 0.298 0.29 0.302 0.298

0.288 0.328 0.318 0.316 0.28 0.314 0.294 0.294 0.286 0.312 0.286 0.302))

5.8.7 The Default Game

ACT-R Tutorial 1-May-12 Unit Five

 45

The default game your model will be playing is an opponent who always stays with a score of 15

or more and both decks have an effectively infinite number of cards in a distribution like a

normal deck of playing cards (an equal distribution of cards with the values from 1-9 and four

times as many cards with a value of 10). Under those circumstances the optimal strategy against

that opponent would win about 46% of the time and choosing randomly wins about 32% of the

time.

The reference solution model is able to improve from winning about 34% of the time in the first

block to winning around 40% in the final blocks on average over the 100 hands as shown in this

graph from running 500 games.

It is also able to learn against other opponents and when the distribution of cards in the deck

differs. Your model should show similar or better performance for that default game and also

still be able to learn in other situations i.e. just encoding an optimal strategy for the default

opponent and deck distributions into your model is not an adequate solution to the task.

After producing a model which learns to play the default game you may want to try testing it

with different opponents or other decks. The experiment code which runs the task has some

flexibility built into it that allows for modifying the game that is played. Details on how to

ACT-R Tutorial 1-May-12 Unit Five

 46

change the game code and some suggestions for other game situations are found in the

experiment description text for unit 5.

 Anderson, J. R. (1974). Retrieval of propositional information from long-term memory.

Cognitive Psychology, 5, 451 – 474.

 Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do

children know what to do? In C. Sophian (Ed.), Origins of cognitive skills (pp. 229-293).

Hillsdale, NJ: Erlbaum.

