
ACT-R Tutorial 13-Dec-11 Unit Three

 1

Unit 3: Attention

This unit is concerned with developing a better understanding of how perceptual attention works

in ACT-R, particularly as it is concerned with visual attention.

3.1 Visual Locations

When a visual display such as this

 V N T Z

 C R Y K

 W J G F

is presented to ACT-R a representation of all the visual information is immediately accessible in a

visual icon. One can view the contents of this icon using the “Visicon” button in the environment

or with the command print-visicon:

> (print-visicon)

Loc Att Kind Value Color ID

--------- --- ------------- ---------------- -------------- -------------

(80 111) NEW TEXT "v" BLACK VISUAL-LOCATION0

(80 161) NEW TEXT "c" BLACK VISUAL-LOCATION1

(80 211) NEW TEXT "w" BLACK VISUAL-LOCATION2

(130 111) NEW TEXT "n" BLACK VISUAL-LOCATION3

(130 161) NEW TEXT "r" BLACK VISUAL-LOCATION4

(130 211) NEW TEXT "j" BLACK VISUAL-LOCATION5

(180 111) NEW TEXT "t" BLACK VISUAL-LOCATION6

(180 161) NEW TEXT "y" BLACK VISUAL-LOCATION7

(180 211) NEW TEXT "g" BLACK VISUAL-LOCATION8

(230 111) NEW TEXT "z" BLACK VISUAL-LOCATION9

(230 161) NEW TEXT "k" BLACK VISUAL-LOCATION10

(230 211) NEW TEXT "f" BLACK VISUAL-LOCATION11

This prints the information of all the features that are available for the model to see. For each

feature it shows the screen location, attentional status, general object type, specific value

information, color, and a name by which it will be referenced. This low-level feature set is what

is searched when a visual-location request is made.

3.1.1 Visual Location Requests

When requesting the visual location of an object there are many slots that can be specified in the

request. In the last unit we only used the request parameter :attended. We will expand on the use

of :attended in this unit. In addition, we will also provide more information about requests on all

ACT-R Tutorial 13-Dec-11 Unit Three

 2

of the slots of the visual-location chunk-type and show another request parameter which can be

specified - :nearest.

3.1.2 The Attended Test in More Detail

The :attended request parameter was introduced in unit 2. It tests whether or not the model has

attended the object at that location, and the possible values are new, nil, and t. Very often we use

the fact that attention tags elements in the visual display as attended or not to enable us to draw

attention to the previously unattended elements. Consider the following production:

(p find-random-letter

 =goal>

 isa read-letters

 state find

==>

 +visual-location>

 isa visual-location

 :attended nil

 =goal>

 state attending)

In its action, this production requests the location of an object that has not yet been attended

(:attended nil). Otherwise, it places no preference on the location to be selected. When there is

more than one item in the visicon that matches the request, the one most recently added to the

visual icon (the newest one) will be chosen. If multiple items also match on their recency, then

one will be picked randomly among those. If there are no objects which meet the constraints, then

the error state will be set for the visual-location buffer. After a feature is attended (with a visual

request to move-attention), it will be tagged as attended t and this production’s request for a

visual-location will not return the location of such an object.

3.1.2.1 Finsts

There is a limit to the number of objects which can be tagged as attended t, and there is also a

time limit on how long an item will remain marked as attended t. These attentional markers are

called finsts (INSTantiation FINgers) and are based on the work of Zenon Pylyshyn. The number

of finsts and the length of time that they persist can be set with the parameters :visual-num-finsts

and :visual-finst-span respectively.

The default number of finsts is four, and the default decay time is three seconds. Thus, with these

default settings, at any time there can be no more than four objects marked as attended t, and after

three seconds the attended state of an item will revert from t to nil. Also, when attention is

shifted to an item that would require more finsts than there are available the oldest one is reused

for the new item i.e. if there are four items marked with finsts as attended t and you move

attention to a fifth item the first item that had been marked as attended t will now be marked as

attended nil and the fifth item will be marked as attended t. Because the default value is small,

productions like the one above are not very useful for modeling tasks with a large number of

http://ruccs.rutgers.edu/faculty/pylyshyn.html

ACT-R Tutorial 13-Dec-11 Unit Three

 3

items on the screen because the model will end up revisiting items very quickly. One solution is

to always set :visual-num-finsts to a value that works for your task, but one of the goals of ACT-R

modeling is to produce parameter free models, so a different approach is generally desired. After

discussing some of the other specifications one can use in a request we will come back to how

one could do such things.

3.1.3 Visual-location slots

Because the vision module was designed around interacting with a 2-D screen the primary slots

for visual-locations are screen-x and screen-y. They represent the location based on its x and y

position on the screen. We will only be working with models that are interacting with a 2-D

screen in the tutorial and thus all the visual items have locations based on their positions within

the window the model is interacting with. The upper left corner is screen-x 0 and screen-y 0 with

x increasing from left to right and y increasing from top to bottom.

There is also a distance slot in the visual-location chunk-type. This represents the distance from

the model to the location. Because we are assuming a 2-D display, all the visual-locations will

have a fixed value of 15 which represents a distance of 15 inches from the model to the screen.

The height and width slots hold the dimensions of the item measured in pixels. The size slot holds

the approximate area covered by the item measured in degrees of visual angle squared. These

values provide the general shape and size of the item on the display.

The color slot holds a representation of the color of the item. Typically, these will be symbolic

descriptors like black or red which are chunks. However, a modeler could use abstract values or

numbers to represent the color if that information were more useful to the task being modeled.

The kind and value slots of the visual-location provide a general description of the item and may

not contain all of the specific information needed to fully describe the item. To get specific

information the model will have to attend to the item. The kind slot usually specifies the chunk-

type of the object that will be found when the visual-location is attended. The value slot holds

some description which is assumed to be available without attending. The value shown in the

visicon for a feature is the specific information which will be available after attending the item.

That may not be the same as the value found in the visual-location chunk for the feature. For

example, the visual-location chunks representing the text letters above will have a value slot of

text instead of the specific letter.

It is possible for one to specify abstract devices for a model to interact with instead of a simple

computer screen. When doing so, one may create additional chunk-types to represent the visual-

location information which may have additional slots that hold other information. Those

additional slots can be tested in the same ways as any of the default slots can. Creating new

devices however is beyond the scope of the tutorial.

ACT-R Tutorial 13-Dec-11 Unit Three

 4

3.1.4 Visual-location request specification

One can specify constraints for a visual-location request based on the values of the slots in the

visual-location chunk-type. Any of the slots may be specified using any of the modifiers (-, <, >,

<=, or >=) in much the same way one specifies a retrieval request. Each of the slots may be

specified any number of times. In addition, there are some special tests which one can use that

will be described below. All of the constraints specified will be used to find a visual-location in

the visicon to be placed into the visual-location buffer. If there is no visual-location in the

visicon which satisfies all of the constraints then the visual-location buffer will indicate an error

state.

3.1.4.1 Exact values

If you know the exact values for the slots you are interested in then you can specify those values

directly:

+visual-location>

 isa visual-location

 screen-x 50

 screen-y 124

 color black

You can also use the negation test, -, with the values to indicate that you want a location which

does not have that value:

+visual-location>

 isa visual-location

 color black

 - kind text

Often however, one does not know the specific information about the location of visual items in

advance and things need to be specified more generally in the model.

3.1.4.2 General values

When the slot being tested holds a number it is also possible to use the slot modifiers <, <=, >,

and >= along with specifying the value. Thus to request a location that is to the right of screen-x

50 and at or above screen-y 124 one could use the request:

+visual-location>

 isa visual-location

 > screen-x 50

 <= screen-y 124

In fact, one could use two modifiers for each of the slots to restrict a request to a specific range of

values. For instance to request an object which was located somewhere within a box bounded by

the corners 10,10 and 100,150 one could specify:

ACT-R Tutorial 13-Dec-11 Unit Three

 5

+visual-location>

 isa visual-location

 > screen-x 10

 < screen-x 100

 > screen-y 10
 < screen-y 150

3.1.4.3 Production variables

It is also possible to use variables from the production in the requests instead of specific values.

Consider this production which uses a value from a slot in the goal to test the color:

(p find-by-color

 =goal>

 isa find-color

 target =color

==>

 +visual-location>

 isa visual-location

 color =color

)

Variables from the production can be used just like specific values along with the modifiers.

Assuming that the LHS of the production binds =x, =y, and =kind this would be a valid request:

 +visual-location>

 isa visual-location

 kind =kind
 < screen-x =x

 - screen-x 0

 >= screen-y =y

 < screen-y 400

3.1.4.4 Relative values

If you are not concerned with any specific values, but care more about relative settings then there

are also ways to specify that.

You can use the values lowest and highest in the specification of any slot which has a numeric

value. Of the chunks which match the other constraints the one with the numerically lowest or

highest value for that slot will then be the one found.

In terms of screen-x and screen-y, remember that x coordinates increase from left to right, so

lowest corresponds to leftmost and highest rightmost, while y coordinates increase from top to

bottom, so lowest means topmost and highest means bottommost.

ACT-R Tutorial 13-Dec-11 Unit Three

 6

If this is used in combination with :attended it can allow the model to find things on the screen in

an ordered manner. For instance, to read the screen from left to right you could use:

+visual-location>

 isa visual-location

 :attended nil

 screen-x lowest

assuming that you also move attention to the items so that they become attended and that the

model has sufficient finsts to tag everything.

There is one note about using lowest and highest when more than one slot is specified in that way

for example:

+visual-location>

 isa visual-location

 width highest

 screen-x lowest

 color red

First, all of the non-relative values are used to determine the set of items to be tested for relative

values. Then the relative tests are performed one at a time in the order provided to reduce the

matching set. Thus, the specification above would first consider all items which were red because

that is a constant value. Then it would reduce that to the set of items with the highest width

(widest) and then of those it would pick the one with the lowest screen-x coordinate (leftmost).

That may not produce the same result as this request for the same set of visicon chunks:

+visual-location>

 isa visual-location

 screen-x lowest

 width highest

 color red

This request will again start with all red items. Then it will find those with the lowest x

coordinate and among those will choose the widest.

3.1.4.5 The current value

It is also possible to use the special value current in a request. That means the value of the slot

must be the same as the value for the location of the currently attended object (the one attention

was last shifted to with a move-attention request). This request would find a location which had

the same screen-x value as the current one:

+visual-location>

 isa visual-location

 screen-x current

ACT-R Tutorial 13-Dec-11 Unit Three

 7

You can also use the value current with the modifiers. The following test will find a location

which is up and to the right of the currently attended object in a different color:

+visual-location>

 isa visual-location

 > screen-x current

 < screen-y current

 - color current

If the model does not have a currently attended object (it has not yet attended to anything) then

the tests for current are ignored.

3.1.4.6 Request variables

A special component of the visual-location requests is the ability to use variables to compare the

particular values in a visual-location to each other in the same way that the LHS tests of a

production use variables to match chunks. If a value for a slot in a visual-location request starts

with the character & then it is considered to be a variable in the request in the same way that

values starting with = are considered to be variables on the LHS of a production.

This request:

+visual-location>

 isa visual-location

 height &height

 width &height

would attempt to find a location which has the same value in the height and width slots. The

request variables can be combined with the modifiers and any of the other values allowed to be

used in the requests. Here is an example which may not be the most practical, but shows most of

the components in use together:

+visual-location>

 isa visual-location

 screen-x current

 screen-x &x

 > screen-y 100

 screen-y lowest

 - screen-y &x

That request would try to find a location which had a screen-x value which was the same as the

currently attended location and a screen-y value which was the lowest one greater than 100 but

not the same as the screen-x value.

ACT-R Tutorial 13-Dec-11 Unit Three

 8

This mechanism is probably not very useful with the default slots of a visual-location, but could

become very useful when one creates other devices and visual-location representations for their

models.

3.1.5 The :nearest request parameter

Like :attended, there is another request parameter available in visual-location requests. The

:nearest request parameter can be used to find the items closest to the currently attended location,

or some other location. To find the location of the object nearest to the currently attended

location we can again use the value current:

+visual-location>

 isa visual-location

 :nearest current

It is also possible to specify any location chunk for the nearest test, and the location of the object

nearest to that location will be returned:

+visual-location>

 isa visual-location

 :nearest =some-location

If there are constraints other than nearest specified then they are all tested first. The nearest of the

locations that matches all of the other constraints is the one that will be placed into the buffer.

Specifically, the nearest is determined by the straight line distance using only the screen-x and

screen-y coordinates.

3.1.6 Ordered Search

Above it was noted that a production using this visual-location request (in conjunction with

appropriate attention shifts) could be used to read words on the screen from left to right:

(p read-next-word

 =goal>

 isa read-word

 state find

==>

 +visual-location>

 isa visual-location

 :attended nil

 screen-x lowest

 =goal>

 state attend

)

ACT-R Tutorial 13-Dec-11 Unit Three

 9

However, if there are fewer finsts available than words to be read that production will result in a

loop that reads only one more word than there are finsts. For instance, if there are six words on

the line and the model only has four finsts (the default) then when it attends the fifth word the

finst on the first word will be removed to use because it is the oldest. Then the sixth request will

result in finding the location of the first word again because it is no longer marked as attended. If

it is attended it will get the finst from the second word, and so on.

By using the special tests for current and lowest one could have the model perform the search

from left to right without using the :attended test:

(p read-next-word

 =goal>

 isa read-word

 state find

==>

 +visual-location>

 isa visual-location

 > screen-x current

 screen-x lowest

 =goal>

 state attend

)

That will always be able to find the next word to the right of the currently attended one.

Similarly, one could add tests for the screen-y coordinate to produce a top-to-bottom and left-to-

right search pattern or combine that with the :nearest request parameter to perform other ordered

search strategies.

3.2 The Sperling Task

If you open the sperling model, you will see an example of the effects of visual attention. This

model contains functions for administering the Sperling experiment where subjects are briefly

presented with a set of letters and must try to report them. Subjects see displays of 12 letters such

as:

 V N T Z

 C R Y K

 W J G F

This model reproduces the partial report version of the experiment. In this condition, subjects are

cued sometime after the display comes on as to which of the three rows they must report. The

delay of the cue is either 0, .15, .3, or 1 second after the display appears. Then, after 1 second of

ACT-R Tutorial 13-Dec-11 Unit Three

 10

total display time, the screen is cleared and the subject is to report the letters from the cued row.

In the version we have implemented the responses are to be typed in and the space bar pressed to

indicate completion of the reporting. For the cueing, the original experiment used a tone with a

different frequency for each row and the model will hear simulated tones while it is doing the

task. This task does not have a version which you can run through as a person because of

complications with presenting real tones.

In the original experiment the display is only presented for 50 ms and it is generally believed that

there is an iconic visual memory that holds the stimuli for some time after onset which the

participants are then processing. ACT-R’s vision module does not have such an iconic visual

memory. Thus, for this task we have simulated this for ACT-R by having the display actually

stay on for longer than 50ms. It will be visible for a random period of time between 0.9 to 1.1

seconds to simulate that effect. There were also some other differences to the actual visual

conditions of the original task relative to what we are using for the model, but this simplified

representation is sufficient for the purpose of demonstrating attention with this model.

One thing to note about this model is that it does not use the imaginal module, as described in the

previous unit, to hold the problem representation separate from the control state. Instead, all of

the task relevant information will be kept in the goal buffer chunk. This is done primarily to keep

the productions simpler so as to keep the focus in this unit on the details of the attention

mechanisms.

The following is the trace of ACT-R’s performance of one trial of the task. In this trace the sound

is presented .15 seconds after onset of the display and the target row was the middle one. This

trace was generated with the :trace-detail set to low to avoid lots of the details for now:

> (do-sperling-trial .15)

0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL

0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0 REQUESTED NIL

0.050 PROCEDURAL PRODUCTION-FIRED ATTEND-MEDIUM

0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

0.185 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND

0.185 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION3-0

0.200 AUDIO SET-BUFFER-CHUNK AURAL-LOCATION AUDIO-EVENT0 REQUESTED NIL

0.235 PROCEDURAL PRODUCTION-FIRED ATTEND-HIGH

0.285 PROCEDURAL PRODUCTION-FIRED DETECTED-SOUND

0.320 VISION SET-BUFFER-CHUNK VISUAL TEXT1

0.370 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND

0.370 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2-0

0.420 PROCEDURAL PRODUCTION-FIRED ATTEND-LOW

0.505 VISION SET-BUFFER-CHUNK VISUAL TEXT2

0.555 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND

0.555 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0

0.570 AUDIO SET-BUFFER-CHUNK AURAL TONE0

0.605 PROCEDURAL PRODUCTION-FIRED ATTEND-HIGH

0.655 PROCEDURAL PRODUCTION-FIRED SOUND-RESPOND-MEDIUM

0.690 VISION SET-BUFFER-CHUNK VISUAL TEXT3

0.740 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND

0.740 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION4-0

0.790 PROCEDURAL PRODUCTION-FIRED ATTEND-MEDIUM

0.875 VISION SET-BUFFER-CHUNK VISUAL TEXT4

0.925 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND

0.925 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0

0.975 PROCEDURAL PRODUCTION-FIRED ATTEND-MEDIUM

1.110 PROCEDURAL PRODUCTION-FIRED START-REPORT

ACT-R Tutorial 13-Dec-11 Unit Three

 11

1.110 GOAL SET-BUFFER-CHUNK GOAL REPORT-ROW0

1.110 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TEXT0-0

1.160 PROCEDURAL PRODUCTION-FIRED DO-REPORT

1.160 MOTOR PRESS-KEY c

1.160 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TEXT4-0

1.760 PROCEDURAL PRODUCTION-FIRED DO-REPORT

1.760 MOTOR PRESS-KEY r

1.760 DECLARATIVE RETRIEVAL-FAILURE

2.260 PROCEDURAL PRODUCTION-FIRED STOP-REPORT

2.260 MOTOR PRESS-KEY SPACE

2.560 ------ Stopped because no events left to process

answers: ("K" "Y" "R" "C")

responses: ("R" "C")

2

While the sound is presented at .150 seconds into the run it does not affect the model until sound-

respond-medium fires at .655 seconds into the run to encode the tone. One of the things we will

discuss is what determines the delay of that response. Prior to that time the model is finding

letters anywhere on the screen. After the sound is encoded the search is restricted to the target

row. After the display disappears, the production start-report fires which initiates the keying of

the letters that have been encoded from the target row.

3.3 Visual Attention

As in the models from the last unit there are three steps that the model must perform to encode

visual objects. It must find the location of an object, shift attention to that location, and then

harvest the chunk which encodes that object when attention shifts to the location. In the last unit

this was done with three separate productions, but in this unit because the model is trying to do

this as quickly as possible the encoding and request to find the next are combined into a single

production, and for the first item there is no production that does an initial find.

3.3.1 Buffer Stuffing

Notice that the first production to fire in this model is this one:

(p attend-medium

 =goal>

 isa read-letters

 state attending

 =visual-location>

 isa visual-location

 > screen-y 154

 < screen-y 166

 ?visual>

 state free

==>

 =goal>

ACT-R Tutorial 13-Dec-11 Unit Three

 12

 location medium

 state encode

 +visual>

 isa move-attention

 screen-pos =visual-location)

which tests that there is a chunk in the visual-location buffer. It then encodes in the location slot

of the goal which tone the letter corresponds to, based on the position on the screen, and requests

a shift of visual attention to the object at that location. It matches and fires even though there has

not been a request to put a chunk into the visual-location buffer. However, there is a line in the

trace prior to that which indicates that a visual-location was found:

0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0 REQUESTED NIL

This process is referred to as buffer stuffing and it occurs for both visual and aural percepts. It is

intended as a simple approximation of a bottom-up mechanism of attention. When the visual-

location buffer is empty and the model processes the display it can automatically place the

location of one of the visual objects into the visual-location buffer. The “requested nil” at the

end of the line in the trace indicates that this setting of the chunk in the buffer was not the result a

production’s request.

You can specify the conditions used to determine which location, if any, gets selected for the

visual-location buffer stuffing using the same conditions you would use to specify a visual-

location request in a production. Thus, when the screen is processed, if there is a visual-location

that matches that specification and the visual-location buffer is empty, then that location will be

stuffed into the visual-location buffer.

The default specification for a visual-location to be stuffed into the buffer is :attended new and

screen-x lowest. If you go back and run the previous units’ models you can see that before the

first production fires to request a visual-location there is in fact already one in the buffer, and it is

the leftmost new item on the screen.

Using buffer stuffing allows the model to detect changes to the screen. The alternative method

would be to continually request a location that was marked as :attended new, notice that there was

a failure to find one, and request again until one was found.

One thing to keep in mind is that buffer stuffing only occurs if the buffer is empty. So if you

want to take advantage of it you must make sure that the visual-location buffer is cleared before

the update on which you want a location to be stuffed. That is typically not a problem because

the strict harvesting mechanism that was described in the last unit causes the buffers to be

emptied automatically when they are used in a production.

3.3.2 Testing and Requesting Locations with Slot Modifiers

Something else to notice about this production is that the buffer test of the visual-location buffer

shows modifiers being used when testing slots for values. These tests allow you to do a

ACT-R Tutorial 13-Dec-11 Unit Three

 13

comparison when the slot value is a number, and the match is successful if the comparison is true.

The first one (>) is a greater-than test. If the chunk in the visual-location buffer has a value in the

screen-y slot that is greater than 154, it is a successful match. The second test (<) is a less-than

test, and works in a similar fashion. If the screen-y slot value is less than 166 it is a successful

match. Testing on a range of values like this is important for the visual locations because the

exact location of a piece of text in the icon is determined by its “center” which is dependant on

the font type and size. Thus, instead of figuring out exactly where the text is at in the icon (which

can vary from letter to letter or even for a particular letter on machines with different fonts) the

model is written to accept the text in a range of positions.

After attention shifts, the production encode-row-and-find harvests the visual representation of

the object, marks it with its row designation for future reference, and requests the next location:

(p encode-row-and-find

 =goal>

 isa read-letters

 location =pos

 upper-y =uy

 lower-y =ly

 =visual>

 isa text

==>

 =visual>

 status =pos

 -visual>

 =goal>

 location nil

 state attending

 +visual-location>

 isa visual-location

 :attended nil

 > screen-y =uy

 < screen-y =ly)

Note that this production places the row of the letter (=pos having values high, medium, and low)

into the status slot of the visual object currently in the visual buffer. Later, when reporting, the

system will restrict itself to recalling items from the designated row.

In addition to modifying the chunk, it also explicitly clears the visual buffer. This is done so that

the modified chunk goes into declarative memory. Remember that declarative memory holds the

chunks that have been cleared from the buffers. Typically, strict harvesting will clear the buffers

automatically, but because the chunk in the visual buffer is modified on the RHS of this

production it will not be automatically cleared. Thus, to ensure that this chunk enters declarative

memory at this time we explicitly clear the buffer.

ACT-R Tutorial 13-Dec-11 Unit Three

 14

The production then updates the state slot of the goal and requests a new visual location. The

request for a visual location uses the < and > modifiers for the screen-y slot to restrict the visual

search to a particular region of the screen. The range is defined by the values from the upper-y

and lower-y slots of the chunk in the goal buffer. The initial values for the upper-y and lower-y

slots are shown in the initial goal:

(goal isa read-letters state find upper-y 0 lower-y 300)

and include the whole window, thus the location of any letter that is unattended will be potentially

chosen. When the tone is encoded those slots will be updated so that only the target row’s letters

will be found.

3.3.3 Finsts in Use

There is one important feature to emphasize about this model, which may be useful in the

assignment to follow. The model does not repeat letters because of the :attended nil test in the

requests to the visual location buffer.

Look back at the visual icon for the sperling task displayed above. You will note that all the

characters are initially tagged as attended new. That means that they have not yet been attended

and that they have been added to the icon recently. The time that items remain marked as new is

parameterized and defaults to .5 seconds (it can be changed with the :visual-onset-span

parameter). After that time if they still have not been attended they will be tagged as attended nil.

This allows attention to be sensitive to the onset of an item. As we saw in the previous unit,

visual attention has to be shifted to the object before a representation of it is built in the visual

buffer and it can be accessed by a production. This corresponds to the research in visual attention

showing that preattentively we have access to features of an object but we do not have access to

its identity. This preattentive access to the objects is available through the visual-location buffer.

When we move the model’s attention to an object its attentional status is changed. So if the

model moves its attention to the w and then the n we would get the following:

> (print-visicon)

Loc Att Kind Value Color ID

--------- --- ------------- ---------------- -------------- -------------

(80 111) NEW TEXT "v" BLACK VISUAL-LOCATION0

(80 161) NEW TEXT "c" BLACK VISUAL-LOCATION1

(80 211) T TEXT "w" BLACK VISUAL-LOCATION2

(130 111) T TEXT "n" BLACK VISUAL-LOCATION3

(130 161) NEW TEXT "r" BLACK VISUAL-LOCATION4

(130 211) NEW TEXT "j" BLACK VISUAL-LOCATION5

(180 111) NEW TEXT "t" BLACK VISUAL-LOCATION6

(180 161) NEW TEXT "y" BLACK VISUAL-LOCATION7

(180 211) NEW TEXT "g" BLACK VISUAL-LOCATION8

(230 111) NEW TEXT "z" BLACK VISUAL-LOCATION9

(230 161) NEW TEXT "k" BLACK VISUAL-LOCATION10

(230 211) NEW TEXT "f" BLACK VISUAL-LOCATION11

where the T's for these elements indicate that they have now been attended.

ACT-R Tutorial 13-Dec-11 Unit Three

 15

To keep this unit simple the number of finsts and the finst duration will be set to values large

enough that it does not have to be considered. This unit is concerned with how the minimum time

to search the display determines the behavior of the system, and the searching will be based only

on the marking of the attended feature.

3.4 Auditory Attention

There are a number of productions responsible for processing the auditory message and they serve

as our first introduction to the auditory buffers. As in the visual case, there is an aural-location

to hold the location of an aural message and an aural buffer to hold the sound that is attended.

However, unlike the visual system we typical need only two steps to encode a sound and not

three. This is because usually the auditory field of the model is not crowded with sounds and we

can often rely on buffer stuffing to place the sound’s location into the aural-location buffer. If a

new sound is presented, and the aural-location buffer is empty, then the audio-event for that

sound (the auditory equivalent of a visual-location) is placed into the buffer automatically.

However, there is a delay between the initial onset of the sound and when the audio-event

becomes available. The length of the delay depends on the type of sound being presented (tone,

digit, or other) and represents the time necessary to encode its content. This is unlike the visual-

locations which are immediately available.

In this task the model will hear one of the three possible tones on each trial. The default time it

takes the model’s auditory module to encode a tone sound is .050 seconds. The detected-sound

production responds to the appearance of an audio-event in the aural-location buffer:

(p detected-sound

 =aural-location>

 isa audio-event

 ?aural>

 state free

 ==>

 +aural>

 isa sound

 event =aural-location)

Notice that this production does not test the goal. If there is an audio-event in the aural-location

buffer and the aural state is free this production can fire. It is not specific to this, or any task. On

its RHS it requests that attention shift to the sound.

Our model for this task has three different productions to encode the sounds, one for each of high,

medium, and low tones. The following is the production for the low tone:

(p sound-respond-low

 =goal>

 isa read-letters

ACT-R Tutorial 13-Dec-11 Unit Three

 16

 tone nil

 =aural>

 isa sound

 content 500

==>

 =goal>

 tone low

 upper-y 205

 lower-y 215)

The content slot of a tone sound encodes the frequency of the tone. For this experiment a 500

Hertz sound is considered low, a 1000 Hertz sound medium, and a 2000 Hertz sound high. On

the RHS this production records the type of tone presented in the goal and updates the restrictions

on the y coordinates for the search to constrain it to the appropriate row.

It takes some time for the impact of the tone to make itself felt on the information processing.

Consider this portion of a trace in the case where the tone was sounded .150 seconds after the

onset of the display:

0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0

0.185 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND

0.185 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION3-0

0.200 AUDIO SET-BUFFER-CHUNK AURAL-LOCATION AUDIO-EVENT0 REQUESTED NIL

0.235 PROCEDURAL PRODUCTION-FIRED ATTEND-HIGH

0.285 PROCEDURAL PRODUCTION-FIRED DETECTED-SOUND

Although the sound was initiated at .150 seconds, it takes .050 seconds to detect the nature of the

sound. Thus, its event appears in the aural-location buffer at .200 seconds. At .235 seconds

detected-sound can be selected in response to the event that happened. It could not be selected

sooner because the attend-high production was selected at .185 seconds (before the tone was

available) and takes 50 milliseconds to complete. When the detected-sound production

completes at .285 seconds aural attention is shifted to the sound.

0.285 PROCEDURAL PRODUCTION-FIRED DETECTED-SOUND

...

0.570 AUDIO SET-BUFFER-CHUNK AURAL TONE0

0.605 PROCEDURAL PRODUCTION-FIRED ATTEND-HIGH

0.655 PROCEDURAL PRODUCTION-FIRED SOUND-RESPOND-MEDIUM

0.690 VISION SET-BUFFER-CHUNK VISUAL TEXT3

0.740 PROCEDURAL PRODUCTION-FIRED ENCODE-ROW-AND-FIND

0.740 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION4-0

0.790 PROCEDURAL PRODUCTION-FIRED ATTEND-MEDIUM

Attending to and fully encoding the sound takes .285 seconds. So at .570 seconds the encoded

sound chunk becomes available in the aural buffer while the production attend-high is firing.

The production sound-respond-medium is then selected and fires at .605 seconds (after the

attend-high production completes). The next production to fire is encode-row-and-find. It

encodes the last letter that was read and issues a request to look at a letter that is in the correct

row this time, instead of an arbitrary letter. Thus, even though the sound is given at .150 seconds

it is not until .690 seconds, when encode-row-and-find is selected, that it has any impact on the

processing of the visual array.

ACT-R Tutorial 13-Dec-11 Unit Three

 17

3.5 Typing and Control

The production that initiates typing the answers is:

(P start-report

 =goal>

 isa read-letters

 tone =tone

 ?visual>

 state free

 ==>

 +goal>

 isa report-row

 row =tone

 +retrieval>

 isa text

 status =tone)

This causes a new chunk to be placed into the goal buffer rather than a modification to the chunk

that is currently there (as indicated by the +goal rather than an =goal). The goal module’s

requests create new chunks the same way the imaginal module’s requests do except that there is

no time cost for creating a new goal chunk. The goal is no longer to read letters but rather to

report the target row. Note also that this production issues a retrieval request for a letter in the

target row.

This production can match at many points in the model’s run, but we do not want it to apply as

long as there are letters to be perceived. We only want this rule to apply when there is nothing

else to do. Each production has a quantity associated with it called its utility. The productions’

utilities determine which production gets selected during conflict resolution if there is more than

one that matches. We will discuss utility in more detail in later units. For now, the important

thing to know is that the production with the highest utility among those that match is the one

selected. Thus, we can make this production less preferred by setting its utility value low. The

function for setting production parameters is spp (set production parameters). It is similar to sgp

which is used for the general parameters as discussed previously. The utility of a production is

set with the :u parameter, so the following call found in the model sets the utility of the start-

report production to -2:

(spp start-report :u -2)

The default utility is 0. So, this production will not be selected as long as there are other

productions with a higher utility that match, and in particular that will be as long as there is still

something in the target row on the screen to be processed by the productions that encode the

screen.

Also note that the productions that process the sound are given higher utility values than the

default in the model:

ACT-R Tutorial 13-Dec-11 Unit Three

 18

(spp detected-sound :u 10)

(spp sound-respond-low :u 10)

(spp sound-respond-medium :u 10)

(spp sound-respond-high :u 10)

This is so that the sound will be processed as soon as possible – these productions will be

preferred over any others that match at the same time.

Once the report starts, the following production is responsible for reporting all the letters in the

target row:

(P do-report

 =goal>

 isa report-row

 row =tone

 =retrieval>

 isa text

 status =tone

 value =val

 ?manual>

 state free

 ==>

 +manual>

 isa press-key

 key =val

 +retrieval>

 isa text

 status =tone

 :recently-retrieved nil

)

This production fires when a text item has been retrieved and the motor module is free. As

actions, it presses the key corresponding to the letter retrieved and requests a retrieval of another

letter. Notice that it does not modify the chunk in the goal buffer (which is the only buffer that

does not get cleared by strict harvesting) and thus can fire again once the other conditions are met.

Here is a portion of the trace showing the results of this production firing and its selection to fire

again:

1.160 PROCEDURAL PRODUCTION-FIRED DO-REPORT

1.160 MOTOR PRESS-KEY c

1.160 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TEXT4-0

1.760 PROCEDURAL PRODUCTION-FIRED DO-REPORT

Something new that you may notice in that production is the request parameter in the retrieval

request (:recently-retrieved). We will discuss that in the next section.

ACT-R Tutorial 13-Dec-11 Unit Three

 19

When there are no more letters to be reported (a retrieval failure occurs because the model can not

retrieve any more letters from the target row), the following production applies to terminate

processing:

(p stop-report

 =goal>

 isa report-row

 row =row

 ?retrieval>

 state error

 ?manual>

 state free

==>

 +manual>

 isa press-key

 key space

 -goal>

)

It presses the space key to indicate that it is done and then clears the chunk from the goal buffer to

stop the model.

3.6 Declarative Finsts

While doing this task the model only needs to report the letters it has seen once each. One way to

do that easily is to indicate which chunks have been retrieved previously so that they are not

retrieved again. However, one cannot modify the chunks in declarative memory. Modifying the

chunk in the retrieval buffer will result in a new chunk being added to declarative memory with

that modified information, but the original unmodified chunk will also still be there. Thus some

other mechanism must be used.

The way this model handles that is by taking advantage of the declarative finsts built into the

declarative memory module. Like the vision system, the declarative system marks items that

have been retrieved with tags that can be tested against in the retrieval request. These finsts are

not part of the chunk, but can be tested for with the :recently-retrieved request parameter in a

retrieval request as shown in the do-report production:

 +retrieval>

 isa text

 status =tone

 :recently-retrieved nil

If it is specified as nil, then only a chunk that has not been recently retrieved (marked with a finst)

will be retrieved. In this way the model can exhaustively search declarative memory for items

ACT-R Tutorial 13-Dec-11 Unit Three

 20

without repeating. That is not always necessary and there are other ways to model such tasks, but

it is a convenient mechanism that can be used when needed.

Like the visual system, the number and duration of the declarative finsts is also configurable

through parameters. The default is four declarative finsts which last 3 seconds each. Those are

set using the :declarative-num-finsts and :declarative-finst-span parameters respectively. In this

model the default of four finsts is sufficient, but the duration of 3 seconds is potentially too short

because of the time it takes to make the responses. Thus in this model the span is set to 10

seconds to avoid any potential problems:

(sgp :v t :declarative-finst-span 10)

3.7 Data Fitting

One can see the average performance of the model run over a large number of trials by using the

function run-sperling and giving it the number of trials one wants to see run. However, there are

a few changes to the model that one should make first. The first thing to change is to remove the

sgp call that sets the :seed parameter which causes the model to always perform the same trial in

the same way, otherwise the performance is going to be identical on every trial. The easiest way

to remove that call is to place a semi-colon at the beginning of the line like this:

;(sgp :seed (100 0))

A semi-colon in a Lisp file designates a comment and everything on the line after the semi-colon

is ignored.

After making that change the model will be presented with different trials and perform differently

from trial to trial (after the model is saved and reloaded).

There are other changes that can be made to the model to make it run much faster.

The first is to turn off the trace by setting the :v parameter to nil:

(sgp :v nil :declarative-finst-span 10)

You will also want to turn off the printing of the answers and responses which is controlled by a

global variable called *show-responses* in this task and it too should be set to nil:

(setf *show-responses* nil)

It can be sped up even more by making the model use a virtual window instead of a real one.

That will require making changes to the Lisp code that controls the experiment, and thus the

details of how to do that are in the unit 3 experiment code document. A virtual window is an

abstraction of a real window (a real window is a displayed window which both a person and a

model can interact with) that the model can “see” and interact with as if it were a real window

without the overhead of actually displaying and updating it on the screen.

When one calls run-sperling with all of these changes, one sees something similar to:

ACT-R Tutorial 13-Dec-11 Unit Three

 21

> (run-sperling 100)

CORRELATION: 0.997

MEAN DEVIATION: 0.115

Condition Current Participant Original Experiment

 0.00 sec. 3.20 3.03

 0.15 sec. 2.43 2.40

 0.30 sec. 2.17 2.03

 1.00 sec. 1.56 1.50

This prints out the correlation and mean deviation between the experimental data and the average

of the 100 ACT-R simulated runs. Also printed out are the original data from the Sperling

experiment.

From this point on in the tutorial we will compare the performance of the models on the tasks to

the data collected from people doing the tasks to provide a measure of how well the models

compare to human performance. For the assignment models, you should be able to produce

models that compare to human performance at least as well as the model results shown in the

units.

3.8 The Subitizing Task

Your assignment for this unit is to write a model for a subitizing task. This is an experiment

where you are presented with a set of marks on the screen (in this case Xs) and you have to count

how many there are. If you load the subitize model you can run yourself in this experiment by

calling the subitize function and providing the symbol human:

(subitize 'human)

You will be presented with 10 trials in which you will see from 1 to 10 objects on the screen. The

trials will be in a random order. You should press the number key that corresponds to the number

of items on the screen unless there are 10 objects in which case you should type 0. The following

is the outcome from one of my runs through the task:

> (subitize 'human)

CORRELATION: 0.956

MEAN DEVIATION: 0.367

Items Current Participant Original Experiment

 1 0.80(T) 0.60

 2 0.93(T) 0.65

 3 0.91(T) 0.70

 4 1.16(T) 0.86

 5 1.46(T) 1.12

 6 1.84(T) 1.50

 7 1.75(T) 1.79

 8 2.85(T) 2.13

 9 2.73(T) 2.15

 10 2.58(T) 2.58

ACT-R Tutorial 13-Dec-11 Unit Three

 22

This provides a comparison between my data and the data from an experiment by Jensen, Reese,

& Reese (1950). The value in parenthesis after the time will be either T or NIL indicating

whether or not the answer the participant gave was correct (T is correct, and NIL is incorrect).

3.8.1 The Vocal System

We have already seen that the default ACT-R mechanism for pressing the keys can take a

considerable amount of time, which would have a serious affect on the results of this model. One

solution would be to more explicitly control the hand movements to provide faster responses, but

that is beyond the scope of this unit. For this task the model will provide a vocal response i.e. it is

going to say the number of items on the screen. This is done by making a request to the speech

module (through the vocal buffer) and is very similar to the requests to the motor module through

the manual buffer which we have already seen.

Here is the production in the Sperling model that presses a key:

(P do-report

 =goal>

 isa report-row

 row =tone

 =retrieval>

 isa text

 status =tone

 value =val

 ?manual>

 state free

 ==>

 +manual>

 isa press-key

 key =val

 +retrieval>

 isa text

 status =tone

 :recently-retrieved nil

)

With the following changes it would speak the response instead (note however that the sperling

experiment is not written to accept a vocal response so it will not properly score those responses if

you attempt to run the model with these modifications):

(P do-report

 =goal>

 isa report-row

ACT-R Tutorial 13-Dec-11 Unit Three

 23

 row =tone

 =retrieval>

 isa text

 status =tone

 value =val

 ?vocal>

 state free

 ==>

 +vocal>

 isa speak

 string =val

 +retrieval>

 isa text

 status =tone

 :recently-retrieved nil

)

The primary change is that instead of the manual buffer we use the vocal buffer. On the LHS we

query the vocal buffer to make sure that the speech module is not currently in use:

 ?vocal>

 state free

Then on the RHS we make a request of the vocal buffer to speak the response:

 +vocal>

 isa speak

 string =val

The default timing for speech acts is .200 seconds per assumed syllable based on the length of the

string to speak. That value works well for this assignment so we will not go into the details of

adjusting it.

3.8.2 Exhaustively Searching the Visual Icon

When the model is doing this task it will need to exhaustively search the display. It can use the

ability of the visual system to tag those elements that have been attended and not go back to them

-- just as in the Sperling task. To make the assignment easier, the number of finsts has been set to

10 in the starting model. Thus, your model only needs to use the :attended specification in the

visual-location requests. The model also has to be able to detect when there are no more

unattended visual locations. This will be signaled by an error when a request is made of the

visual-location buffer that cannot be satisfied. This is the same as when the retrieval buffer

reports an error when no chunk that matches the request can be retrieved. The way for a

production to test for that would be to have the following test on the left-hand side:

ACT-R Tutorial 13-Dec-11 Unit Three

 24

(p respond

…

 ?visual-location>

 state error

…

==>

…)

When no location can be found to satisfy a request of the visual-location buffer it will report a

state of error.

3.8.3 The Assignment

Your task is to write a model for the subitizing task that always responds correctly, and does an

approximate job of reproducing the human data. The following are the results from my ACT-R

model:

CORRELATION: 0.980

MEAN DEVIATION: 0.230

Items Current Participant Original Experiment

 1 0.54 (T) 0.60

 2 0.77 (T) 0.65

 3 1.01 (T) 0.70

 4 1.24 (T) 0.86

 5 1.48 (T) 1.12

 6 1.71 (T) 1.50

 7 1.95 (T) 1.79

 8 2.18 (T) 2.13

 9 2.42 (T) 2.15

 10 2.65 (T) 2.58

You can see this does a fair job of reproducing the range of the data. However, the human data

shows little effect of set size (approx. 0.05-0.10 seconds) in the range 1-4 and a larger effect

(approx. 0.3 seconds) above 4 in contrast to this model which increases about .23 seconds for

each item. The small effect for little displays probably reflects the ability to perceive small

numbers of objects as familiar patterns and the larger effect for large displays probably reflects

the time to retrieve count facts (which we will not accurately model until we get to subsymbolic

modeling). The linear response pattern of this simple model is a sufficient approximation for our

current purposes, and provides a fit to the data that you should aspire to match.

In the starting model you are provided with chunks that encode numbers and their ordering from 0

to 10:

(add-dm (one isa chunk)(two isa chunk)

 (three isa chunk)(four isa chunk)

 (five isa chunk)(six isa chunk)

 (seven isa chunk)(eight isa chunk)

 (nine isa chunk)(ten isa chunk)

 (zero isa chunk) (eleven isa chunk)

ACT-R Tutorial 13-Dec-11 Unit Three

 25

 (start isa chunk)

 (n0 isa number-fact identity zero next one value "0")

 (n1 isa number-fact identity one next two value "1")

 (n2 isa number-fact identity two next three value "2")

 (n3 isa number-fact identity three next four value "3")

 (n4 isa number-fact identity four next five value "4")

 (n5 isa number-fact identity five next six value "5")

 (n6 isa number-fact identity six next seven value "6")

 (n7 isa number-fact identity seven next eight value "7")

 (n8 isa number-fact identity eight next nine value "8")

 (n9 isa number-fact identity nine next ten value "9")

 (n10 isa number-fact identity ten next eleven value "0")

 (goal isa count state start))

They number facts also contain a slot called value that holds the string of the number to be

spoken.

The chunk-type provided for the goal chunk is:

(chunk-type count count state)

It has a slot to maintain the current count and a slot to hold the current model state. An initial

goal chunk which has a state slot value of start is also set initially. As with the demonstration

model for this unit, you may use only the goal buffer for holding the task information instead of

splitting the representation between the goal and imaginal buffers. As always however, the

provided chunk-types and chunks are only a recommended starting point and one is free to use

other representations and control mechanisms.

To run the experiment that the model is to perform there are two functions that can be used. The

subitize function can be called without any parameters to perform one pass through all of the

trials in a random order. Because there is no randomness in the timing of the experiment and we

have not enabled any variability in the model’s actions, it is not necessary to run the model

multiple times and average the results to assess the model’s performance. The other function is

called subitize-trial and can be used to run a single trial. It takes one parameter, which is the

number of items to display, and it will run the model through that single trial and return a list of

the time of the response and whether or not the answer given was correct.

> (subitize-trial 4)

(1.24 T)

One final note, as with the other models you have worked with so far, the model will be reset

before each trial. Thus, you do not need to have the model detect the screen change to know

when to transition to the next trial because it will always start the trial with the initial goal chunk.

Sperling, G.A. (1960). The information available in brief visual presentation [Special issue].

Psychological Monographs, 74 (498).

