The experiments in this unit are more involved than those of the last unit. The experiments are more complicated, and they involve collecting data and comparing it to existing experimental results. Many of the functions that were introduced in the last unit will be seen again (some of them always have to be there, like run) and there will be a few more introduced.

Because it is necessary to run the model multiple times and average the results for data comparison speed is important. One thing that can greatly improve the speed of the model is to have it use a virtual window instead of interacting with a real window on the computer. Virtual windows are an abstraction of a window interface that is internal to ACT-R. From the model’s perspective there is no difference between a virtual window and a real window, but there is much less overhead involved with virtual windows because they exist entirely within Lisp. The only problem is that you cannot see a virtual window, which can make debugging a model difficult. To help with that, the tools that were introduced in the last unit for building and manipulating windows work exactly the same for real windows and virtual windows. All that is necessary to switch between them is one parameter when the window is opened. Thus, you can build the experiment with a real window and debug the model using a window that you can see. Then with one small change make the window virtual and run the model quickly over many runs.
Here is the experiment code from the Sperling model.

Misc window:
(defvar *responses* nil)

(defvar *show-responses* nil)

(defvar *done* nil)

(defconstant *sperling-exp-data* '(3.03 2.40 2.03 1.50))

(defun do-trial (onset-time)

 (reset)

 (let* ((lis (permute-list '("B" "C" "D" "F" "G" "H" "J"

 "K" "L" "M" "N" "P" "Q" "R"

 "S" "T" "V" "W" "X" "Y" "Z")))

 (answers nil)

 (tone (act-r-random 3))

 (window (open-exp-window "Sperling Experiment"

 :visible t

 :width 300

 :height 300)))

 (dotimes (i 3)

 (dotimes (j 4)

 (let ((txt (nth (+ j (* i 4)) lis)))

 (when (= i tone)

 (push txt answers))

 (add-text-to-exp-window :text txt

 :width 40

 :x (+ 75 (* j 50))

 :y (+ 101 (* i 50))))))

 (if *actr-enabled-p*

 (progn

 (install-device window)

 (new-tone-sound (case tone (0 2000) (1 1000) (2 500)) .5 onset-time)

 (schedule-event-relative (+ .9 (act-r-random .2)) 'clear-screen)

 (proc-display)

 (setf *responses* nil)

 (run 30 :real-time nil))

 (progn

 (sleep onset-time)

 (if (fboundp 'beep)

 (dotimes (i (1+ tone)) (beep))

 (format t "Cannot generate sounds.~%Recall row ~S~%" (1+ tone)))

 (sleep (- 1.0 onset-time))

 (setf *done* nil)

 (setf *responses* nil)

 (clear-exp-window)

 (while (null *done*)

 (allow-event-manager window))))

 (when *show-responses*

 (format t "~%~%answers: ~S~%responses: ~S~%" answers *responses*))

 (compute-score answers)))

(defun compute-score (answers)

 (let ((score 0))

 (dolist (x answers score)

 (when (member x *responses* :test #'string-equal)

 (incf score)))))

(defun clear-screen ()

 (clear-exp-window)

 (proc-display))

(defmethod rpm-window-key-event-handler ((win rpm-window) key)

 (if (string= key " ")

 (setf *done* t)

 (push (string key) *responses*)))

(defun report-data (data)

 (correlation data *sperling-exp-data*)

 (mean-deviation data *sperling-exp-data*)

 (print-results data))

(defun print-results (data)

 (format t "~%Condition Current Participant Original Experiment~%")

 (do ((condition '(0.00 0.15 0.30 1.00) (cdr condition))

 (temp1 data (cdr temp1))

 (temp2 *sperling-exp-data* (cdr temp2)))

 ((null temp1))

 (format t " ~4,2F sec. ~6,2F ~6,2F~%"

 (car condition) (car temp1) (car temp2))))

(defun run-block ()

 (let ((times (permute-list '(0.0 .15 .30 1.0)))

 (result nil))

 (dolist (x times)

 (push (cons x (do-trial x)) result))

 (sort result #'< :key #'car)))

(defun repeat-experiment (n)

 (let ((results (list 0 0 0 0)))

 (dotimes (i n)

 (setf results (mapcar #'+ results (mapcar #'cdr (run-block)))))

 (report-data (mapcar #'(lambda (x) (/ x n)) results))))
Three global variables are defined. *responses* will hold the list of keys pressed by the participant, *show-responses* is used as a flag to indicate whether or not to print out the participant’s responses every trial, and *done* is used to signal when a person has finished a trial.
(defvar *responses* nil)

(defvar *show-responses* nil)

(defvar *done* nil)
Next we define a global constant that holds the results of the original experiment so that the model’s performance can be compared to it.

(defconstant *sperling-exp-data* '(3.03 2.40 2.03 1.50))

The do-trial function takes one parameter which is the delay time at which to present the auditory cue in seconds. It presents the data and waits for the responses, and returns the number of letters correctly recalled in the target row.
(defun do-trial (onset-time)

First it resets ACT-R and randomizes a list of letters

 (reset)

 (let* ((lis (permute-list '("B" "C" "D" "F" "G" "H" "J"

 "K" "L" "M" "N" "P" "Q" "R"

 "S" "T" "V" "W" "X" "Y" "Z")))

then it creates a variable to hold the list of target letters

 (answers nil)

and randomly chooses which row to be the target

 (tone (act-r-random 3))
and opens a window to do the task. The keyword parameters used when opening this window are new in this unit and will be described below in detail.

 (window (open-exp-window "Sperling Experiment"

 :visible t

 :width 300

 :height 300)))

Then it displays 3 rows of 4 letters recording the letters that are in the target row in the answers variable.

 (dotimes (i 3)

 (dotimes (j 4)

 (let ((txt (nth (+ j (* i 4)) lis)))

 (when (= i tone)

 (push txt answers))

 (add-text-to-exp-window :text txt

 :width 40

 :x (+ 75 (* j 50))

 :y (+ 101 (* i 50))))))

If the model is doing the task then the following actions are performed
 (if *actr-enabled-p*

 (progn

The model is told that the opened window is the one to interact with

 (install-device window)

A tone is scheduled to occur for the model at the time specified which lasts for .5 seconds and has a frequency determined by which row is to be recalled.

 (new-tone-sound (case tone (0 2000) (1 1000) (2 500)) .5 onset-time)

At a random time between .9 and 1.1 seconds the clear-screen function (which is defined below) will be called

 (schedule-event-relative (+ .9 (act-r-random .2)) 'clear-screen)

The model is told to process the display

 (proc-display)

The variable to hold the model’s responses is cleared

 (setf *responses* nil)

The model is run for up to 30 seconds

 (run 30))
That is the end of the model specific section so now we look at what happens to run a person. First it waits for the delay time to pass

 (progn

 (sleep onset-time)

Then play the required number of beeps to indicate which row to recall if the beep function is defined in the Lisp being used, otherwise just print it out
 (if (fboundp 'beep)

 (dotimes (i (1+ tone)) (beep))

 (format t "Cannot generate sounds.~%Recall row ~S~%" (1+ tone)))

Wait until a total of 1 second has elapsed since the display appeared

 (sleep (- 1.0 onset-time))

Clear the done flag and the responses list

 (setf *done* nil)

 (setf *responses* nil)

erase the contents of the window

 (clear-exp-window)

wait for the person to finish entering keys (indicated by pressing space)

 (while (null *done*)

 (allow-event-manager window))))
That ends the section that is specific to a person doing the task and the rest of the function applies to both. If the *show-responses* variable is set it prints out the correct answers and the responses

 (when *show-responses*

 (format t "~%~%answers: ~S~%responses: ~S~%" answers *responses*))

Then it calls the compute-score function (defined below) to return the number of correct responses
 (compute-score answers)))

The compute-score function takes one parameter which is a list of the letters in the target row. It returns the number of those items that were given by the participant.
(defun compute-score (answers)

 (let ((score 0))

 (dolist (x answers score)

 (when (member x *responses* :test #'string-equal)

 (incf score)))))

The clear-screen function is called when the model is running at the appropriate time. It clears the screen and makes the model reprocess it.

(defun clear-screen ()

 (clear-exp-window)

 (pm-proc-display))

The rpm-window-key-event-handler gets called automatically when a key is pressed and is passed the window in which the press occurred and the key that was pressed. For this task it places the keys onto the *responses* list and sets the *done* flag when the space bar is pressed.
(defmethod rpm-window-key-event-handler ((win rpm-window) key)

 (if (string= key " ")

 (setf *done* t)

 (push (string key) *responses*)))

The report-data function takes one parameter which is a list that should represent average data of participants in the task. Those data are compared to the original experimental data and the correlation, mean deviation, and a table of the results are printed.
(defun report-data (data)

 (correlation data *sperling-exp-data*)

 (mean-deviation data *sperling-exp-data*)

 (print-results data))

The print-results function takes one parameter which should be a list containing average data of participants in the task. Those data are printed in a table with the onset times and the original data.

(defun print-results (data)

 (format t "~%Condition Current Participant Original Experiment~%")

 (do ((condition '(0.00 0.15 0.30 1.00) (cdr condition))

 (temp1 data (cdr temp1))

 (temp2 *sperling-exp-data* (cdr temp2)))

 ((null temp1))

 (format t " ~4,2F sec. ~6,2F ~6,2F~%"

 (car condition) (car temp1) (car temp2))))

The run-block function takes no parameters. It runs one trial of the task at each of the 4 onset times randomly ordered. It returns a list of conses ordered by onset time, with the car of each cons being the onset time and the cdr being the number of correct responses.
(defun run-block ()

 (let ((times (permute-list '(0.0 .15 .30 1.0)))

 (result nil))

 (dolist (x times)

 (push (cons x (do-trial x)) result))

 (sort result #'< :key #'car)))

The repeat-experiment function takes one parameter which is the number of blocks of the experiment to run. A block is one trial at each of the 4 onset times. The results of those blocks are averaged together and then the comparison of that average data to the original experimental data is printed.
(defun repeat-experiment (n)

 (let ((results (list 0 0 0 0)))

 (dotimes (i n)

 (setf results (mapcar #'+ results (mapcar #'cdr (run-block)))))

 (report-data (mapcar #'(lambda (x) (/ x n)) results))))

The new ACT-R and miscellaneous modeling functions that are used in this model are:

Open-exp-window – this was introduced in the last unit. Here we see it getting passed keyword parameters that were not used previously. :height and :width specify the size of the window in pixels. The :visible parameter is the flag that determines whether a real or a virtual window is used. If :visible is t (the default value if it is not specified) then a real window is used. If :visible is nil, then a virtual window is used. There are two other parameters, :x and :y which can be used to specify the position of the upper left corner of the window on the main display.
New-tone-sound – This function takes 2 required parameters and a third optional parameter. The first parameter is the frequency of a tone to be presented to the model. The second is the duration of that tone in seconds. If the third parameter is specified then it indicates at what time the tone is to be presented, and if it is omitted then the tone is to be presented immediately. At the requested time a tone sound will be made available to the model’s auditory module of the requested frequency and duration.

Schedule-event-relative – This function takes 2 required parameters and a number of additional parameters. It is used to schedule functions to be called during the running of the model. The first parameter specifies the time at which the function should be called. The second parameter is the function to call. By scheduling functions to be called during the running of the model it is possible to have the experiment change without stopping the model to do so. More information on the scheduling functions can be found in the ACT-R Software Framework API document.
Sleep – sleep is actually a function defined in ANSI Common Lisp, but because it is being used for experiment generation it seemed appropriate to discuss it. The Lisp specification for sleep says it takes one parameter, seconds, which is a non-negative real, and it causes execution to cease and become dormant for approximately the seconds of real time indicated by seconds, whereupon execution is resumed. This is only useful for a person doing a task because it has no impact upon a model.
Correlation – this function takes 2 required parameters which must be equal length ‘collections’ of numbers. The numbers can be in arrays or lists and they do not both need to be in the same format (one could be an array and the other a list). The only requirement is that they have the same number of numbers in them. This function then extracts those numbers and computes the correlation between the two sets of numbers. That correlation value is returned. There is a keyword parameter :output which defaults to t. When :output is t the correlation is printed to *standard-output*. If :output is a string, stream, or pathname then it is used to open a stream to which the results are written.
Mean-deviation – this function operates just like correlation, except that the calculation performed is the mean deviation between the data sets.
Now we will look at the subitizing experiment code.
(defvar *response* nil)

(defvar *response-time* nil)

(defconstant *subitizing-exp-data*

 '(.6 .65 .7 .86 1.12 1.5 1.79 2.13 2.15 2.58))

(defun do-trial (n)

 (let ((points (generate-points n))

 (window (open-exp-window "Subitizing Experiment"

 :visible t

 :width 300

 :height 300

 :x 300

 :y 300)))

 (dolist (point points)

 (add-text-to-exp-window :text "x"

 :width 10

 :x (first point)

 :y (second point)))

 (setf *response* nil)

 (setf *response-time* nil)

 (if *actr-enabled-p*

 (progn

 (reset)

 (install-device window)

 (proc-display)

 (run 30))

 (progn

 (let ((start-time (get-time)))

 (while (null *response*)

 (allow-event-manager window))

 (setf *response-time* (- *response-time* start-time)))))

 (let ((response (if *response* (read-from-string *response*) -1)))

 (list (if (null *response-time*) 30.0 (/ *response-time* 1000.0))

 (or (= response n)

 (and (= n 10) (= response 0)))))))

(defun experiment ()

 (let (result)

 (dolist (items (permute-list '(10 9 8 7 6 5 4 3 2 1)))

 (push (list items (do-trial items)) result))

 (report-data (mapcar 'second (sort result '< :key 'car)))))

(defun report-data (data)

 (let ((rts (mapcar #'first data)))

 (correlation rts *subitizing-exp-data*)

 (mean-deviation rts *subitizing-exp-data*)

 (print-results data)))

(defun print-results (predictions)

 (format t "Items Current Participant Original Experiment~%")

 (dotimes (i (length predictions))

 (format t "~3d ~5,2f (~3s) ~5,2f~%"

 (1+ i) (car (nth i predictions)) (second (nth i predictions))

 (nth i *subitizing-exp-data*))))

(defun generate-points (n)

 (let ((points nil))

 (dotimes (i n points)

 (push (new-distinct-point points) points))))

(defun new-distinct-point (points)

 (do ((new-point (list (+ (act-r-random 240) 20) (+ (act-r-random 240) 20))

 (list (+ (act-r-random 240) 20) (+ (act-r-random 240) 20))))

 ((not (too-close new-point points)) new-point)))

(defun too-close (new-point points)

 (some #'(lambda (a) (and (< (abs (- (car new-point) (car a))) 40)

 (< (abs (- (cadr new-point) (cadr a))) 40))) points))

(defmethod rpm-window-key-event-handler ((win rpm-window) key)

 (setf *response-time* (get-time))

 (setf *response* (string key)))

(defmethod device-speak-string ((win rpm-window) text)

 (setf *response-time* (get-time))

 (setf *response* text))
First we define some global variables to hold the response and the time of that response.

(defvar *response* nil)

(defvar *response-time* nil)

Then we create a global constant that holds the data from the original experiment so that the model’s performance can be compared to it.

(defconstant *subitizing-exp-data*

 '(.6 .65 .7 .86 1.12 1.5 1.79 2.13 2.15 2.58))

The do-trial function takes one parameter which is the number of items to present. It presents one trial to either the model or a person and then returns a list of two items. The first item is the response time and the second item indicates whether or not the response was correct (t) or incorrect (nil).

(defun do-trial (n)

First it builds a list of n points using the generate-points function (defined below) and opens a window

 (let ((points (generate-points n))

 (window (open-exp-window "Subitizing Experiment"

 :visible t

 :width 300

 :height 300

 :x 300

 :y 300)))

Then it draws an x at each of those random points

 (dolist (point points)

 (add-text-to-exp-window :text "x"

 :width 10

 :x (first point)

 :y (second point)))

It clears the response variables

 (setf *response* nil)

 (setf *response-time* nil)

Now, if the model is doing the task it resets the model, tells it which window to look at, makes it process the display, and then run for up to 30 seconds

 (if *actr-enabled-p*

 (progn

 (reset)

 (install-device window)

 (proc-display)

 (run 30))

If a person is doing the task

 (progn

Record the time that the trial starts

 (let ((start-time (get-time)))

Wait for a response

 (while (null *response*)

 (allow-event-manager window))

Set the response time to the difference between the start time and the time the response was recorded

 (setf *response-time* (- *response-time* start-time)))))
Then for either participant the return list is generated. The response is checked for correctness and the time is converted to seconds, or set to 30 seconds if there was no response.
 (let ((response (if *response* (read-from-string *response*) -1)))

 (list (if (null *response-time*) 30.0 (/ *response-time* 1000.0))

 (or (= response n)

 (and (= n 10) (= response 0)))))))

The experiment function takes no parameters. It presents each of the 10 possible conditions once in random order collecting the data. It then prints out the data and the comparison to the experimental results.

(defun experiment ()

 (let (result)

 (dolist (items (permute-list '(10 9 8 7 6 5 4 3 2 1)))

 (push (list items (do-trial items)) result))

 (report-data (mapcar 'second (sort result '< :key 'car)))))

The report-data function takes one parameter which is a list of response lists as are returned by the do-trial function. It prints the comparison of the response times to the experimental data and then prints a table of the response times and correctness.
(defun report-data (data)

 (let ((rts (mapcar #'first data)))

 (correlation rts *subitizing-exp-data*)

 (mean-deviation rts *subitizing-exp-data*)

 (print-results data)))

The print-results function takes one parameter which is a list of response lists as are returned by the do-trial function. It prints a table of the response times and correctness along with the original data.

(defun print-results (predictions)

 (format t "Items Current Participant Original Experiment~%")

 (dotimes (i (length predictions))

 (format t "~3d ~5,2f (~3s) ~5,2f~%"

 (1+ i) (car (nth i predictions)) (second (nth i predictions))

 (nth i *subitizing-exp-data*))))

The generate-points function takes 1 parameter which specifies how many points to generate. It returns a list of n randomly generated points (lists of x and y coordinates) to use for displaying the items. The points are generated such that they are not too close to each other and within the default experiment window size.

(defun generate-points (n)

 (let ((points nil))

 (dotimes (i n points)

 (push (new-distinct-point points) points))))

The new-distinct-point function takes one parameter which is a list of points. It returns a new point that is randomly generated within the default experiment window boundary that is not too close to any of the points on the list provided.
(defun new-distinct-point (points)

 (do ((new-point (list (+ (act-r-random 240) 20) (+ (act-r-random 240) 20))

 (list (+ (act-r-random 240) 20) (+ (act-r-random 240) 20))))

 ((not (too-close new-point points)) new-point)))
The too-close function takes two parameters. The first is a point and the second is a list of points. It returns t if the first point is within 40 pixels in either the x or y direction of any of the points on the list, otherwise it returns nil.

(defun too-close (new-point points)

 (some #'(lambda (a) (and (< (abs (- (car new-point) (car a))) 40)

 (< (abs (- (cadr new-point) (cadr a))) 40)))

 points))
The rpm-window-key-event-handler method is called automatically when a key is pressed. It records the time of the key press and the key that was pressed. In this task only a person is pressing keys (the model is speaking the response). There is one important thing to note about this function. The do-trial function is looping until the *response* variable is set when a person does the task. Because this function gets called by the system asynchronously, it is important to set the variable that is being used as the flag that indicates it is finished last. Otherwise the do-trial function may attempt to use the *response-time* variable before it gets set.
(defmethod rpm-window-key-event-handler ((win rpm-window) key)

 (setf *response-time* (get-time))

 (setf *response* (string key)))

The device-speak-string method is very similar to the rpm-window-key-event-handler. It is called automatically whenever the model speaks. It is also passed two parameters which are the current experiment window for the model and the text the model is speaking. It sets the global variables to record the response and when it occurred.
(defmethod device-speak-string ((win rpm-window) text)

 (setf *response-time* (get-time))

 (setf *response* text))
The only new ACT-R function used in this model is get-time.

get-time – This function takes no parameters. It returns the current time in milliseconds. If the model is doing the task (when *actr-enabled-p* is t) the time is taken from the simulation time and if a person is doing the task (when *actr-enabled-p* is nil) the time is taken from the internal timer.
Buffer stuffing
Although it was not used in the models, the buffer stuffing mechanism was introduced in this unit text. It mentioned that one can change the default conditions for which item can be stuffed into the buffer. The function which does that is called set-visloc-default. It takes keywords that specify the slots to test and the value to test for as would be used in a production. Here are a couple of examples:

(set-visloc-default :attended new :screen-x lowest)

(set-visloc-default :screen-x current :screen-y (within 100 230))

(set-visloc-default :kind text :color red)
set-visloc-default – This command sets the conditions that will be used to select the visual location that gets buffer stuffed. When the screen is processed by the model (proc-display is called) if the visual-location buffer is empty a visual-location that matches the conditions specified by this command will be placed into the visual-location buffer. Essentially, what happens is that when proc-display gets called if the visual-location buffer is empty a +visual-location request is automatically executed using the slot tests set with set-visloc-default.

