
ACT-R Tutorial 1-May-12 Unit Six

 1

Unit 6: Selecting Productions on the Basis of Their Utilities and

Learning these Utilities

Occasionally, we have had cause to set parameters of productions so that one production

will be preferred over another in the conflict resolution process. Now we will examine

how production utilities are computed and used in conflict resolution. We will also look

at how these utilities are learned.

6.1 The Utility Theory

Each production has a utility associated with it which can be set directly as we have seen

in some of the previous units. In this unit we will describe how those utilities can be

learned from experience. Like activations, utilities have noise added to them. The noise is

controlled by the utility noise parameter s which is set with the parameter :egs. The noise

is distributed according to a logistic distribution with a mean of 0 and a variance of


2

 2

3
s

2

If there are a number of productions competing with expected utility values Uj the

probability of choosing production i is described by the formula




j

sU

sU

j

i

e

e
iobability

2/

2/

)(Pr

where the summation is over all the productions which are currently able to fire (their

conditions were satisfied during the matching). Note however that that equation only

serves to describe the production selection process. It is not actually computed by the

system. The production with the highest utility (after noise is added) will be the one

chosen to fire.

6.2 Building Sticks Example

We will illustrate these ideas with an example from problem solving. Lovett (1998)

looked at participants solving the building-sticks problem illustrated in the figure below.

This is an isomorph of Luchins waterjug problem that has a number of experimental

advantages. Participants are given an unlimited supply of building sticks of three lengths

and are told that their objective is to create a target stick of a particular length. There are

two basic strategies they can select – they can either start with a stick smaller than the

desired length and add sticks (like the addition strategy in Luchins waterjugs) or they can

ACT-R Tutorial 1-May-12 Unit Six

 2

start with a stick that is too long and “saw off” lengths equal to various sticks until they

reach the desired length (like the subtraction strategy). The first is called the undershoot

strategy and the second is called the overshoot strategy. Subjects show a strong tendency

to hillclimb and choose as their first stick a stick that will get them closest to the target

stick.

INITIAL STATE

desired:

current:

building:

UNDERSHOOT UNDERSHOOTOVERSHOOT

desired:

current:

building:

desired:

current:

building:

desired:

current:

building:

possible first moves

a b c

a b c a b c a b c

You can go through a version of this by loading the model bst-nolearn. By calling the

command (bst-set 'human) you will run through a pair of problems in a version of the

task built to run with a model (this is not the original experiment) and it will return a list

of two items indicating which strategy, overshoot or undershoot, that you chose first.

The experiment will look something like this:

To do the task you will see four lines initially. The top three are black and correspond to

the building sticks you have available. The fourth line is green and that is the target

length you are attempting to build. The current stick you have built so far will be blue

and below the target stick. You will build the current stick by pressing the button to the

left of a stick you would like to use next. If your current line is shorter than the target the

new stick will be added to the current stick, and if your current line is longer than the

ACT-R Tutorial 1-May-12 Unit Six

 3

target the new stick will be subtracted from the current stick. When you have

successfully matched the target length the word “Done” will appear below the current

stick and you will be able to progress to the next trial. At any time you can hit the button

labeled Reset to clear the current stick and start over.

As it turns out, both of these problems can only be solved by the overshoot strategy.

However, the first one looks like it can be solved more easily by the undershoot strategy.

The exact lengths of the sticks in pixels are:

A = 15 B = 200 C = 41 Goal = 103

The difference between B and the goal is 97 pixels while the difference between C and

the goal is only 62 pixels – a 35 pixel difference of differences. However, the only

solution to the problem is B – 2C – A. The same solution holds for the second problem:

A = 10 B = 200 C = 29 Goal = 132

But in this case the difference between B and the goal is 68 pixels while the difference

between C and the goal is 103 pixels – a 35 pixel difference of differences in the other

direction. You can run the model on these problems and it will tend to choose

undershoot for the first and overshoot for the second but not always. You can run the

model multiple times by calling the function bst-task with one argument which is the

number of runs through the two trials. The following is the outcome of 100 trials (you

may want to make the window virtual if you plan on running the model over lots of

trials):

> (bst-task 100)

(25 73)

The two numbers in the list returned are the number of times overshoot was chosen on

the first problem and the second problem respectively.

The model for the task involves many productions for encoding the screen and selecting

sticks. However, the behavior of the model is really controlled by four productions that

make the decision as to whether to apply the overshoot or the undershoot strategy.

(p decide-over

 =goal>

 isa try-strategy

 state choose-strategy

 strategy nil

 =imaginal>

 isa encoding

 under =under

 over =over

 !eval! (< =over (- =under 25))

ACT-R Tutorial 1-May-12 Unit Six

 4

==>

 =imaginal>

 =goal>

 state prepare-mouse

 strategy over

 +visual-location>

 isa visual-location

 kind oval

 screen-y 60)

(p force-over

 =goal>

 isa try-strategy

 state choose-strategy

 - strategy over

==>

 =goal>

 state prepare-mouse

 strategy over

 +visual-location>

 isa visual-location

 kind oval

 screen-y 60)

(p decide-under

 =goal>

 isa try-strategy

 state choose-strategy

 strategy nil

 =imaginal>

 isa encoding

 over =over

 under =under

 !eval! (< =under (- =over 25))

==>

 =imaginal>

 =goal>

 state prepare-mouse

 strategy under

 +visual-location>

 isa visual-location

 kind oval

 screen-y 85)

ACT-R Tutorial 1-May-12 Unit Six

 5

(p force-under

 =goal>

 isa try-strategy

 state choose-strategy

 - strategy under

==>

 =goal>

 state prepare-mouse

 strategy under

 +visual-location>

 isa visual-location

 kind oval

 screen-y 85)

The key information is in the over and under slots of the chunk in the imaginal buffer.

The over slot encodes the pixel difference between stick b and the target stick, and the

under slot encodes the difference between the target stick and stick c. These values have

been computed by prior productions that encode the problem. If one of these differences

appears to get the model much closer to the target (more than 25 pixels closer than the

other) then the decide-under or decide-over productions can fire to choose the strategy.

In all situations, the other two productions, force-under and force-over, can apply. Thus,

if there is a clear difference in how close the two sticks are to the target stick there will be

three productions (one decide, two force) that can apply and if there is not then just the

two force productions can apply. The choice among the productions is determined by

their relative utilities which we can see using the Procedural Viewer in the environment,

or by using the spp command:

> (spp force-over force-under decide-over decide-under)

Parameters for production FORCE-OVER:

 :utility 8.720

 :u 10.000

 :at 0.050

Parameters for production FORCE-UNDER:

 :utility 8.328

 :u 10.000

 :at 0.050

Parameters for production DECIDE-OVER:

 :utility 16.871

 :u 13.000

 :at 0.050

Parameters for production DECIDE-UNDER:

 :utility 6.597

 :u 13.000

 :at 0.050

The utility values, u, were set by the following spp commands in the model:

(spp decide-over :u 13)

(spp decide-under :u 13)

(spp force-over :u 10)

(spp force-under :u 10)

The :u parameters for the force productions are set to 10 while they are set to a more

ACT-R Tutorial 1-May-12 Unit Six

 6

optimistic 13 for the decide productions. The :utility parameter shows the last computed

utility value for the production during a conflict-resolution event and includes the utility

noise. Thus, we see that even though the true utility for decide-over is 13 it had a utility

of 16.871 the last time it was matched in conflict-resolution. Unless a production is

explicitly assigned a value for u it is given a default of 0. Therefore, the above four

productions are the only ones in the model with non-zero utilities.

Let us consider how these productions apply in the case of the two problems in the

model. Since the difference between the under and over differences is 35 pixels, there

will be one decide and two force productions that match for both problems. Let us

consider the probability of choosing each production according to the equation.



Probability (i) 
eU i / 2s

e
U j / 2s

j



In the model, the parameter s is set at 3. First, consider the probability of the decide

production:

504.

)(Pr

0024.4/3

24.4/3

24.4/1024.4/1024.4/13

24.4/13









eee

e

eee

e
decideobability

Similarly, the probability of the two force productions can be shown to be .248. Thus,

there is a .248 probability that a force production will fire that has the model try to solve

the problem in the direction other than it appears.

6.3 Utility Learning

So far we have only considered the situation where the production parameters are static.

The utilities of productions can also be learned as the model runs based on rewards that

are received by the model. When utility learning is enabled, they are updated according

to a simple integrator model (e.g. see Bush & Mosteller, 1955)
.
. If Ui(n-1) is the utility of

a production i after its n-1st application and Ri(n) is the reward the production receives

for its nth application, then its utility Ui(n) after its nth application will be



Ui(n) Ui(n1)[Ri(n)Ui(n1)] Difference Learning Equation

where  is the learning rate and is typically set at .2 (this can be changed by adjusting the

ACT-R Tutorial 1-May-12 Unit Six

 7

:alpha parameter with the sgp command). This is also basically the Rescorla-Wagner

learning rule (Rescorla & Wagner, 1972). According to this equation the utility of a

production will be gradually adjusted until it matches the average reward that the

production receives.

There are a couple of things to mention about the rewards. The rewards can occur at any

time, and are not necessarily associated with any particular production. A number of

productions may have fired before a reward is delivered. The reward Ri(n) that

production i will receive will be the external reward received minus the time from

production i’s selection to the reward. This serves to give less reward to more distant

productions. This is like the temporal discounting in reinforcement learning but proves to

be more robust within the ACT-R architecture (not suggesting it is generally more

robust). This reinforcement goes back to all the productions which have fired between

the current reward and the previous reward.

While it is possible to introduce rewards into ACT-R at any time by calling the trigger-

reward command, it is also possible to attach them to specific productions, and this is

often an efficient way to introduce rewards. For instance, in the building sticks task there

is one production that fires when an action has been successful and another which fires

when it has not:

(p read-done

 =goal>

 isa try-strategy

 state read-done

 =visual>

 isa text

 value "done"

==>

 +goal>

 isa try-strategy

 state start)

(p pick-another-strategy

 =goal>

 isa try-strategy

 state wait-for-click

 ?manual>

 state free

 =visual-location>

 isa visual-location

 > screen-y 100

==>

 =goal>

 state choose-strategy)

ACT-R Tutorial 1-May-12 Unit Six

 8

One can associate rewards with these outcomes by setting the reward values of those

productions:

(spp read-done :reward 20)

(spp pick-another-strategy :reward 0)

When read-done fires it will propagate a reward of 20 back to the previous productions

which have been fired. Of course, productions earlier in the chain will receive smaller

values because the time to the reward is subtracted from the reward. If pick-another-

strategy fires, a reward of 0 will be propagated back – which means that previous

productions will actually receive a negative reward because of the time that passed.

Consider what happens when a sequence of productions leads to a dead end, pick-

another-strategy fires, another sequence of productions fire that leads to a solution, and

then read-done fires. The reward associated with read-done will propagate back only to

the production which fired after pick-another-strategy and no further because the reward

only goes back as far as the last reward. Note that the production read-done will receive

its own reward, but pick-another-strategy will not receive any of read-done’s reward

since it will have received the reward from its own firing.

6.4 Learning in the Building Sticks Task

The following are the percent choice of overshoot for each of the problems in the testing

set from an experiment with a building sticks task reported in Lovett & Anderson (1996):

 a b c Goal %OVERSHOOT

 15 250 55 125 20

 10 155 22 101 67

 14 200 37 112 20

 22 200 32 114 47

 10 243 37 159 87

 22 175 40 73 20

 15 250 49 137 80

 10 179 32 105 93

 20 213 42 104 83

 14 237 51 116 13

 12 149 30 72 29

 14 237 51 121 27

 22 200 32 114 80

 14 200 37 112 73

 15 250 55 125 53

The majority of these problems look like they can be solved by undershoot and in some

cases the pixel difference is greater than 25. However, the majority of the problems can

only be solved by overshoot. The first and last problems are interesting because they are

ACT-R Tutorial 1-May-12 Unit Six

 9

identical and look strongly like they are undershoot problems. It is the only problem that

can be solved either by overshoot or undershoot. Only 20% of the participants solve the

first problem by overshoot but after the sequence of problems this rises to 53% for the

last problem.

The model bst-learn included with the unit simulates this experiment. This is the same

as the model in bst-nolearn except that the learning mechanism is enabled (the :ul

parameter is t in the sgp command) and all of the stimuli for the experiment are now

encoded in the *bst-stimuli* variable. The productions are given the same initial utility

values as in bst-nolearn. The utilities at the start of the experiment look like this:

> (spp force-over force-under decide-over decide-under)

 Parameters for production FORCE-OVER:

 :utility NIL

 :u 10.000

 :at 0.050

 :reward NIL

Parameters for production FORCE-UNDER:

 :utility NIL

 :u 10.000

 :at 0.050

 :reward NIL

Parameters for production DECIDE-OVER:

 :utility NIL

 :u 13.000

 :at 0.050

 :reward NIL

Parameters for production DECIDE-UNDER:

 :utility NIL

 :u 13.000

 :at 0.050

 :reward NIL

The following is the performance of the model on a 100 simulation run:

> (bst-experiment 100)

CORRELATION: 0.803

MEAN DEVIATION: 17.129

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 23.0 60.0 59.0 70.0 91.0 42.0 80.0 86.0 59.0 34.0 33.0 22.0 54.0 72.0 56.0

DECIDE-OVER : 13.1506

DECIDE-UNDER: 11.1510

FORCE-OVER : 12.1525

FORCE-UNDER : 6.5943

Also printed out are the average values of the utility parameters for the critical

productions after each run through the experiment over these 100 runs. As can be seen,

the two over productions have increased their utility while the under productions have

had a drop off. On average, the force-over production has a slightly higher value than

the decide-under production. It is this change in values that creates the increased

tendency to choose the overshoot strategy.

This model also turns on the utility learning trace, the :ult parameter, which works similar

to the activation trace shown in the previous unit. If you enable the trace in the model by

ACT-R Tutorial 1-May-12 Unit Six

 10

setting the :v parameter to t then every time there is a reward given to the model the trace

will show the utility changes for all of the productions affected by that reward. Here is an

example from a run showing the positive reward for successfully completing a trial:

 5.163 PROCEDURAL PRODUCTION-FIRED READ-DONE

 5.163 UTILITY PROPAGATE-REWARD 20

 Utility updates with Reward = 20.0 alpha = 0.2

 Updating utility of production START-TRIAL

 U(n-1) = 0.0 R(n) = 14.837 [20.0 - 5.163 seconds since selection]

 U(n) = 2.9674

 Updating utility of production FIND-NEXT-LINE

 U(n-1) = 0.0 R(n) = 14.887 [20.0 - 5.113 seconds since selection]

 U(n) = 2.9774

 Updating utility of production ATTEND-LINE

 U(n-1) = 0.0 R(n) = 14.937 [20.0 - 5.063 seconds since selection]

 U(n) = 2.9874

 Updating utility of production ENCODE-LINE-A

 U(n-1) = 0.0 R(n) = 15.0720005 [20.0 - 4.928 seconds since selection]

 U(n) = 3.0144002

 Updating utility of production FIND-NEXT-LINE

 U(n-1) = 2.9774 R(n) = 15.122 [20.0 - 4.878 seconds since selection]

 U(n) = 5.40632

 Updating utility of production ATTEND-LINE

 U(n-1) = 2.9874 R(n) = 15.172 [20.0 - 4.828 seconds since selection]

 U(n) = 5.42432

 Updating utility of production ENCODE-LINE-B

 U(n-1) = 0.0 R(n) = 15.3220005 [20.0 - 4.678 seconds since selection]

 U(n) = 3.0644002

 Updating utility of production FIND-NEXT-LINE

 U(n-1) = 5.40632 R(n) = 15.372 [20.0 - 4.628 seconds since selection]

 U(n) = 7.399456

 Updating utility of production ATTEND-LINE

 U(n-1) = 5.42432 R(n) = 15.422 [20.0 - 4.578 seconds since selection]

 U(n) = 7.4238563

 Updating utility of production ENCODE-LINE-C

 U(n-1) = 0.0 R(n) = 15.557 [20.0 - 4.443 seconds since selection]

 U(n) = 3.1114001

 Updating utility of production FIND-NEXT-LINE

 U(n-1) = 7.399456 R(n) = 15.607 [20.0 - 4.393 seconds since selection]

 U(n) = 9.040965

 Updating utility of production ATTEND-LINE

 U(n-1) = 7.4238563 R(n) = 15.657 [20.0 - 4.343 seconds since selection]

 U(n) = 9.070485

 Updating utility of production ENCODE-LINE-GOAL

 U(n-1) = 0.0 R(n) = 15.792 [20.0 - 4.208 seconds since selection]

 U(n) = 3.1584

 Updating utility of production ENCODE-UNDER

 U(n-1) = 0.0 R(n) = 15.927 [20.0 - 4.073 seconds since selection]

 U(n) = 3.1854

 Updating utility of production ENCODE-OVER

 U(n-1) = 0.0 R(n) = 16.062 [20.0 - 3.938 seconds since selection]

 U(n) = 3.2124002

 Updating utility of production DECIDE-UNDER

 U(n-1) = 13.0 R(n) = 16.112 [20.0 - 3.888 seconds since selection]

 U(n) = 13.6224

 Updating utility of production MOVE-MOUSE

 U(n-1) = 0.0 R(n) = 16.162 [20.0 - 3.838 seconds since selection]

 U(n) = 3.2324002

 Updating utility of production CLICK-MOUSE

 U(n-1) = 0.0 R(n) = 16.713 [20.0 - 3.287 seconds since selection]

 U(n) = 3.3425999

 Updating utility of production LOOK-FOR-CURRENT

ACT-R Tutorial 1-May-12 Unit Six

 11

 U(n-1) = 0.0 R(n) = 17.063 [20.0 - 2.937 seconds since selection]

 U(n) = 3.4126

 Updating utility of production ATTEND-LINE

 U(n-1) = 9.070485 R(n) = 17.112999 [20.0 - 2.887 seconds since selection]

 U(n) = 10.6789875

 Updating utility of production ENCODE-LINE-CURRENT

 U(n-1) = 0.0 R(n) = 17.248 [20.0 - 2.752 seconds since selection]

 U(n) = 3.4496

 Updating utility of production CALCULATE-DIFFERENCE

 U(n-1) = 0.0 R(n) = 17.383 [20.0 - 2.617 seconds since selection]

 U(n) = 3.4766

 Updating utility of production CONSIDER-C

 U(n-1) = 0.0 R(n) = 17.433 [20.0 - 2.567 seconds since selection]

 U(n) = 3.4866002

 Updating utility of production CHOOSE-C

 U(n-1) = 0.0 R(n) = 17.568 [20.0 - 2.432 seconds since selection]

 U(n) = 3.5136

 Updating utility of production MOVE-MOUSE

 U(n-1) = 3.2324002 R(n) = 17.618 [20.0 - 2.382 seconds since selection]

 U(n) = 6.10952

 Updating utility of production CLICK-MOUSE

 U(n-1) = 3.3425999 R(n) = 17.668 [20.0 - 2.332 seconds since selection]

 U(n) = 6.2076797

 Updating utility of production LOOK-FOR-CURRENT

 U(n-1) = 3.4126 R(n) = 17.868 [20.0 - 2.132 seconds since selection]

 U(n) = 6.3036804

 Updating utility of production ATTEND-LINE

 U(n-1) = 10.6789875 R(n) = 17.918 [20.0 - 2.082 seconds since selection]

 U(n) = 12.12679

 Updating utility of production ENCODE-LINE-CURRENT

 U(n-1) = 3.4496 R(n) = 18.053 [20.0 - 1.947 seconds since selection]

 U(n) = 6.37028

 Updating utility of production CALCULATE-DIFFERENCE

 U(n-1) = 3.4766 R(n) = 18.188 [20.0 - 1.812 seconds since selection]

 U(n) = 6.41888

 Updating utility of production CONSIDER-C

 U(n-1) = 3.4866002 R(n) = 18.238 [20.0 - 1.762 seconds since selection]

 U(n) = 6.43688

 Updating utility of production CONSIDER-A

 U(n-1) = 0.0 R(n) = 18.373 [20.0 - 1.627 seconds since selection]

 U(n) = 3.6746

 Updating utility of production CHOOSE-A

 U(n-1) = 0.0 R(n) = 18.508 [20.0 - 1.492 seconds since selection]

 U(n) = 3.7015998

 Updating utility of production MOVE-MOUSE

 U(n-1) = 6.10952 R(n) = 18.558 [20.0 - 1.442 seconds since selection]

 U(n) = 8.599216

 Updating utility of production CLICK-MOUSE

 U(n-1) = 6.2076797 R(n) = 19.045 [20.0 - 0.955 seconds since selection]

 U(n) = 8.775144

 Updating utility of production LOOK-FOR-CURRENT

 U(n-1) = 6.3036804 R(n) = 19.395 [20.0 - 0.605 seconds since selection]

 U(n) = 8.921945

 Updating utility of production ATTEND-LINE

 U(n-1) = 12.12679 R(n) = 19.445 [20.0 - 0.555 seconds since selection]

 U(n) = 13.590432

 Updating utility of production ENCODE-LINE-CURRENT

 U(n-1) = 6.37028 R(n) = 19.58 [20.0 - 0.42 seconds since selection]

 U(n) = 9.012224

 Updating utility of production CALCULATE-DIFFERENCE

 U(n-1) = 6.41888 R(n) = 19.715 [20.0 - 0.285 seconds since selection]

 U(n) = 9.078104

 Updating utility of production CHECK-FOR-DONE

ACT-R Tutorial 1-May-12 Unit Six

 12

 U(n-1) = 0.0 R(n) = 19.765 [20.0 - 0.235 seconds since selection]

 U(n) = 3.9529998

 Updating utility of production FIND-DONE

 U(n-1) = 0.0 R(n) = 19.815 [20.0 - 0.185 seconds since selection]

 U(n) = 3.963

 Updating utility of production READ-DONE

 U(n-1) = 0.0 R(n) = 19.95 [20.0 - 0.05 seconds since selection]

 U(n) = 3.9900002

6.5 Learning in a Probability Choice Experiment

Your assignment is to develop a model for a "probability matching" experiment run by

Friedman et al (1964). The difference between this assignment and earlier ones is that

you are responsible for almost all of the code for the model, including the code which

presents the experiment. The experiment to be implemented is very simple. The basic

procedure, which is repeated for 48 trials, is:

1. The participant is presented with a screen saying "Choose"

2. The participant either types H for heads or T for tails

3. When the key is pressed the screen is cleared and presents as feedback the correct

answer, either "Heads" or "Tails".

4. That feedback stays there for exactly 1 second before the next trial is presented.

Friedman et al arranged it so that heads was the correct choice on 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, and 90% of the trials (independent of what the participant had

done). For your experiment you will only be concerned with the 90% condition. Thus,

your experiment will be 48 trials long and “Heads” will be the correct answer 90% of the

time. We have averaged together the data from the 10% and 90% conditions (flipping

responses) to get an average proportion of choice of the dominant answer in each block

of 12 trials. These proportions are 0.66, 0.78, 0.82, and 0.84. This is the data that your

model is to fit. Note, this is not the percentage of correct responses – the correctness of

the response does not matter. Your model must begin with a 50% chance of saying

heads, then based on the feedback from the experiment adjust its probabilities so that it

averages close to 66% over the first block of 12 trials, and increase to about 84% by the

final block. You will run the model through the experiment many times (resetting before

each experiment) and average the data of those runs for comparison. As an aspiration

level, this is the performance of the model that I wrote, averaged over 100 runs:

> (collect-data 100)

CORRELATION: 0.991

MEAN DEVIATION: 0.012

 Original Current

 0.660 0.663

 0.780 0.787

 0.820 0.816

 0.840 0.818

In achieving this, the parameters I worked with were the noise in the utilities (set by the

:egs parameter in the sgp command) and the rewards associated with successful and

unsuccessful predictions.

ACT-R Tutorial 1-May-12 Unit Six

 13

The starting model you are given for this task, choice, contains only the functions which

are able to run a person through one trial and to collect a key press response using the

“trial at a time” experiment writing style as discussed in the unit 4 experiment code

document. The rpm-window-key-event-handler method provided is very similar to those

from other units and will record a key press from either a person or the model by setting

the variable *response* to the string representing that key. The function do-choice-

person will run one trial returning the key that was pressed. You will have to write a

similar function to run the model through one trial, which should be named do-choice-

model. You also need to write a function called choice-data that takes one parameter

and runs the experiment that many times and prints out the average results of the runs and

the correlation and deviation of the average data to the experimental data. The choice-

data function does not have to be able to run a person through the task. It only needs to

be able to run the model. You also must write the model for the task that fits the data.

My suggestion would be to first write the do-choice-model function and a model that

does the task (without trying to fit the data), and make sure that works correctly. An

important issue here is to make sure that it correctly represents the experiment described,

including the timing. Next write a function to run a block of 12 trials and test that to

make sure the model works correctly when going from trial to trial. Then write a

function to iterate over 4 blocks for running one pass of the experiment and test that.

After that is working write the choice-data function to run the experiment multiple times.

Only then should you be concerned with actually fitting the model to the data, once you

are sure everything else works.

To write the experiment for the model to interact with you will need to use a few ACT-R

functions that were discussed in the previous units’ experiment description files. Those

functions will be described again here, and the models you have seen up to this point

should provide plenty of examples of their use.

The reset function initializes ACT-R. It returns the model to the initial state as specified

in the model file. It is the programmatic equivalent of pressing the “Reset” button in the

environment.

The function install-device takes one parameter which should be a window. That

parameter tells ACT-R with which window the model will be interacting. Everything in

that window can be seen by the model, and all of the model’s motor actions (key presses

and mouse clicks) will affect that window.

The proc-display function is called to make the model “look” at the window. The model

only encodes the screen when requested with a call to proc-display. Thus, for the model

to notice a change to the window proc-display must be called after the change has

occurred. This function performs the buffer stuffing of the visual-location buffer if it is

empty and triggers the re-encoding if the model is attending an item.

The run function can be used to run the model until either it has nothing to do or a

ACT-R Tutorial 1-May-12 Unit Six

 14

specified amount of time has passed. It has one required parameter, the maximum amount

of time to run the model.

The run-full-time function can be used to run the model for a specific amount of time. It

takes one parameter which is the amount of time to run the model.

In addition to those functions there are the correlation and mean-deviation functions

that you will need to use. Those calculate the correlation and mean-deviation between

two lists of numbers.

Here is the function that runs the model through the paired associate task from unit 4

which should serve as a useful example of presenting a task:

(defun do-experiment-model (size trials)

 (let ((result nil)

 (window (open-exp-window "Paired-Associate Experiment" :visible nil)))

 (reset)

 (install-device window)

 (dotimes (i trials)

 (let ((score 0.0)

 (time 0.0)

 (start-time))

 (dolist (x (permute-list (subseq *pairs* (- 20 size))))

 (clear-exp-window)

 (add-text-to-exp-window :text (car x) :x 150 :y 150)

 (setf *response* nil)

 (setf *response-time* nil)

 (setf start-time (get-time))

 (proc-display)

 (run-full-time 5)

 (when (equal (second x) *response*)

 (incf score 1.0)

 (incf time (- *response-time* start-time)))

 (clear-exp-window)

 (add-text-to-exp-window :text (second x) :x 150 :y 150)

 (proc-display)

 (run-full-time 5))

 (push (list (/ score size) (and (> score 0) (/ time (* score 1000.0))))

result)))

 (reverse result)))

It is more complicated than the function you will need for this assignment because it is

recording response times and averaging the data over multiple runs which your do-

choice-model function will not be doing. It also calls reset which you should not do in

your do-choice-model function because you want the model to continue to learn from

ACT-R Tutorial 1-May-12 Unit Six

 15

trial to trial. You should only call reset at the start of each pass through the whole

experiment. Ignoring those complications, it performs a similar sequence of operations to

those necessary to do this experiment: opening a window, presenting an item of text,

running the model, clearing the screen, displaying another item of text and then running

the model again (the code highlighted in red). Note however that the timing for the

choice task is not the same as the timing of the paired associate experiment thus you will

have to do things somewhat differently to accurately replicate the choice task described.

In the choice file provided the do-choice-person function provides the structure for the

displaying of the items in the choice task:

(defun do-trial-person ()

 (let ((window (open-exp-window "Choice Experiment" :visible t)))

 (add-text-to-exp-window :text "choose" :x 50 :y 100)

 (setf *response* nil)

 (while (null *response*)

 (allow-event-manager window))

 (clear-exp-window)

 (add-text-to-exp-window :text (if (< (act-r-random 1.0) .9) "heads" "tails")

 :x 50 :y 100)

 (sleep 1.0)

 response))

What you must do is write the do-choice-model function that presents the display similar

to the way that do-choice-person does, but has the appropriate interaction with ACT-R

(the code colored green handles the interaction for a person doing the task and should not

appear in your do-choice-model function). The exact placement of the choose prompt

and the feedback of heads and tails is not important for the task, and the model should not

assume anything about their locations i.e. your model should still be able to do the task

regardless of where on the screen choose and the feedback occur including situations

where they are not both in the same location.

It is also possible to write the experiment using an event-based style as discussed in the

unit 4 experiment code document. That will require a little more work to program

because it does not analogize as neatly to one of the previous units’ tasks. If you would

like to write the experiment in that way you should look at the zbrodoff model as an

example instead of the paired model as described above. In fact, the different ways to

write the experiment can actually have an effect on the data fitting for this model because

they will likely have slightly different timing on the events which will affect the rewards

received by the productions. For the paired associate task the style of the experiment was

not an issue because the lengths of the trials were fixed. In this case, because the trials

transition on the response of the model, an event-based experiment will provide a more

veridical timing sequence because the events of the experiment will not be affected by

components of the model other than its response. However, either solution is acceptable

ACT-R Tutorial 1-May-12 Unit Six

 16

for the assignment.

Friedman, M. P., Burke, C. J., Cole, M., Keller, L., Millward, R. B., & Estes, W. K.,

(1964). Two-choice behavior under extended training with shifting probabilities of

reinforcement. In R. C. Atkinson (Ed.), Studies in mathematical psychology (pp. 250-

316). Stanford, CA: Stanford University Press.

Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in

problem solving: Combined influences on operator selection. Cognitive Psychology, 31,

168-217.

